
RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

1 di 68 05/04/2008 18.46

RDF Primer
W3C Recommendation 10 February 2004

This version:
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/

Latest version:
http://www.w3.org/TR/rdf-primer/

Previous version:
http://www.w3.org/TR/2003/PR-rdf-primer-20031215/

Editors:
Frank Manola, fmanola@acm.org
Eric Miller, W3C, em@w3.org

Series Editor:
Brian McBride, Hewlett-Packard Laboratories, bwm@hplb.hpl.hp.com

Please refer to the errata for this document, which may include some normative corrections.

See also translations.

Copyright Â© 2004 W3CÂ® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability, trademark, document use and software
licensing rules apply.

Abstract

The Resource Description Framework (RDF) is a language for representing information about resources in the
World Wide Web. This Primer is designed to provide the reader with the basic knowledge required to
effectively use RDF. It introduces the basic concepts of RDF and describes its XML syntax. It describes how to
define RDF vocabularies using the RDF Vocabulary Description Language, and gives an overview of some
deployed RDF applications. It also describes the content and purpose of other RDF specification documents.

Status of this Document

This document has been reviewed by W3C Members and other interested parties, and it has been endorsed by
the Director as a W3C Recommendation. W3C's role in making the Recommendation is to draw attention to the
specification and to promote its widespread deployment. This enhances the functionality and interoperability of
the Web.

This is one document in a set of six (Primer, Concepts, Syntax, Semantics, Vocabulary, and Test Cases)
intended to jointly replace the original Resource Description Framework specifications, RDF Model and Syntax
(1999 Recommendation) and RDF Schema (2000 Candidate Recommendation). It has been developed by the
RDF Core Working Group as part of the W3C Semantic Web Activity (Activity Statement, Group Charter) for
publication on 10 February 2004.

Changes to this document since the Proposed Recommendation Working Draft are detailed in the change log.

The public is invited to send comments to www-rdf-comments@w3.org (archive) and to participate in general
discussion of related technology on www-rdf-interest@w3.org (archive).

A list of implementations is available.

The W3C maintains a list of any patent disclosures related to this work.

This section describes the status of this document at the time of its publication. Other documents may
supersede this document. A list of current W3C publications and the latest revision of this technical report can
be found in the W3C technical reports index at http://www.w3.org/TR/.

Table of Contents

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

2 di 68 05/04/2008 18.46

 1. Introduction
 2. Making Statements About Resources
 2.1 Basic Concepts
 2.2 The RDF Model
 2.3 Structured Property Values and Blank Nodes
 2.4 Typed Literals
 2.5 Concepts Summary
 3. An XML Syntax for RDF: RDF/XML
 3.1 Basic Principles
 3.2 Abbreviating and Organizing RDF URIrefs
 3.3 RDF/XML Summary
 4. Other RDF Capabilities
 4.1 RDF Containers
 4.2 RDF Collections
 4.3 RDF Reification
 4.4 More on Structured Values: rdf:value
 4.5 XML Literals
 5. Defining RDF Vocabularies: RDF Schema
 5.1 Describing Classes
 5.2 Describing Properties
 5.3 Interpreting RDF Schema Declarations
 5.4 Other Schema Information
 5.5 Richer Schema Languages
 6. Some RDF Applications: RDF in the Field
 6.1 Dublin Core Metadata Initiative
 6.2 PRISM
 6.3 XPackage
 6.4 RSS 1.0: RDF Site Summary
 6.5 CIM/XML
 6.6 Gene Ontology Consortium
 6.7 Describing Device Capabilities and User Preferences
 7. Other Parts of the RDF Specification
 7.1 RDF Semantics
 7.2 Test Cases
 8. References
 8.1 Normative References
 8.2 Informational References
 9. Acknowledgments

Appendices

 A. More on Uniform Resource Identifiers (URIs)
 B. More on the Extensible Markup Language (XML)
 C. Changes

1. Introduction

The Resource Description Framework (RDF) is a language for representing information about resources in the
World Wide Web. It is particularly intended for representing metadata about Web resources, such as the title,
author, and modification date of a Web page, copyright and licensing information about a Web document, or
the availability schedule for some shared resource. However, by generalizing the concept of a "Web resource",
RDF can also be used to represent information about things that can be identified on the Web, even when they
cannot be directly retrieved
on the Web. Examples include information about items available from on-line shopping facilities (e.g.,
information about specifications, prices, and availability), or the description of a Web user's preferences for
information delivery.

RDF is intended for situations in which this information needs to be processed by applications, rather than
being only displayed to people. RDF provides a common framework for expressing this information so it can be
exchanged between applications without loss of meaning. Since it is a common framework, application
designers can leverage the availability of common RDF parsers and processing tools. The ability to exchange
information between different applications means that the information may be made available to applications
other than those for which it was originally created.

RDF is based on the idea of identifying things using Web identifiers (called Uniform Resource Identifiers, or

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

3 di 68 05/04/2008 18.46

URIs), and describing resources in terms of simple properties and property values. This enables RDF to
represent simple statements about resources as a graph of nodes and arcs representing the resources, and
their properties and values. To make this discussion somewhat more concrete as soon as possible, the group
of statements "there is a Person identified by http://www.w3.org/People/EM/contact#me, whose name is Eric
Miller, whose email address is em@w3.org, and whose title is Dr." could be represented as the RDF graph in
Figure 1:

Figure 1: An RDF Graph Describing Eric Miller

Figure 1 illustrates that RDF uses URIs to identify:

individuals, e.g., Eric Miller, identified by http://www.w3.org/People/EM/contact#me
kinds of things, e.g., Person, identified by http://www.w3.org/2000/10/swap/pim/contact#Person
properties of those things, e.g., mailbox, identified by
http://www.w3.org/2000/10/swap/pim/contact#mailbox
values of those properties, e.g. mailto:em@w3.org as the value of the mailbox property (RDF also uses
character strings such as "Eric Miller", and values from other datatypes such as integers and dates, as
the values of properties)

RDF also provides an XML-based syntax (called RDF/XML) for recording and exchanging these graphs.
Example 1 is a small chunk of RDF in RDF/XML corresponding to the graph in Figure 1:

Example 1: RDF/XML Describing Eric Miller
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">

 <contact:Person rdf:about="http://www.w3.org/People/EM/contact#me">
 <contact:fullName>Eric Miller</contact:fullName>
 <contact:mailbox rdf:resource="mailto:em@w3.org"/>
 <contact:personalTitle>Dr.</contact:personalTitle>
 </contact:Person>

</rdf:RDF>

Note that this RDF/XML also contains URIs, as well as properties like mailbox and fullName (in an abbreviated
form), and their respective values em@w3.org, and Eric Miller.

Like HTML, this RDF/XML is machine processable and, using URIs, can link pieces of information across the
Web. However, unlike conventional hypertext, RDF URIs can refer to any identifiable thing, including things
that may not be directly retrievable on the Web (such as the person Eric Miller). The result is that in addition to
describing such things as Web pages, RDF can also describe cars, businesses, people, news events, etc. In
addition, RDF properties themselves have URIs, to precisely identify the relationships that exist between the
linked items.

The following documents contribute to the specification of RDF:

RDF Concepts and Abstract Syntax [RDF-CONCEPTS]
RDF/XML Syntax Specification [RDF-SYNTAX]

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

4 di 68 05/04/2008 18.46

RDF Vocabulary Description Language 1.0: RDF Schema [RDF-VOCABULARY]
RDF Semantics [RDF-SEMANTICS]
RDF Test Cases [RDF-TESTS]
RDF Primer (this document)

This Primer is intended to provide an introduction to RDF and describe some existing RDF applications, to help
information system designers and application developers understand the features of RDF and how to use
them. In particular, the Primer is intended to answer such questions as:

What does RDF look like?
What information can RDF represent?
How is RDF information created, accessed, and processed?
How can existing information be combined with RDF?

The Primer is a non-normative
document, which means that it does not provide a definitive specification of RDF. The examples and other
explanatory material in the Primer are provided to help readers understand RDF, but they may not always
provide definitive or fully-complete answers. In such cases, the relevant normative parts of the RDF
specification should be consulted. To help in doing this, the Primer describes the roles these other documents
play in the complete specification of RDF, and provides links pointing to the relevant parts of the normative
specifications, at appropriate places in the discussion.

It should also be noted that these RDF documents update and clarify previously-published RDF specifications,
the Resource Description Framework (RDF) Model and Syntax Specification [RDF-MS] and the Resource
Description Framework (RDF) Schema Specification 1.0 [RDF-S]. As a result, there have been some changes
in terminology, syntax, and concepts. This Primer reflects the newer set of RDF specifications given in the
bulleted list of RDF documents cited above. Hence, readers familiar with the older specifications, and with
earlier tutorial and introductory articles based on them, should be aware that there may be differences between
the current specifications and those previous documents. The RDF Issue Tracking document [RDFISSUE] can
be consulted for a list of issues raised concerning the previous RDF specifications, and their resolution in the
current specifications.

2. Making Statements About Resources

RDF is intended to provide a simple way to make statements about Web resources, e.g., Web pages. This
section describes the basic ideas behind the way RDF provides these capabilities (the normative specification
describing these concepts is RDF Concepts and Abstract Syntax [RDF-CONCEPTS]).

2.1 Basic Concepts

Imagine trying to state that someone named John Smith created a particular Web page. A straightforward way
to state this in a natural language such as English would be in the form of a simple statement such as:

http://www.example.org/index.html has a creator whose value is John Smith

Parts of this statement are emphasized to illustrate that, in order to describe the properties of something, there
need to be ways to name, or identify, a number of things:

the thing the statement describes (the Web page, in this case)
a specific property (creator, in this case) of the thing the statement describes
the thing the statement says is the value of this property (who the creator is), for the thing the statement
describes

In this statement, the Web page's URL (Uniform Resource Locator) is used to identify it. In addition, the word
"creator" is used to identify the property, and the two words "John Smith" to identify the thing (a person) that is
the value of this property.

Other properties of this Web page could be described by writing additional English statements of the same
general form, using the URL to identify the page, and words (or other expressions) to identify the properties
and their values. For example, the date the page was created, and the language in which the page is written,
could be described using the additional statements:

http://www.example.org/index.html has a creation-date whose value is August 16, 1999
http://www.example.org/index.html has a language whose value is English

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

5 di 68 05/04/2008 18.46

RDF is based on the idea that the things being described have properties which have values, and that
resources can be described by making statements, similar to those above, that specify those properties and
values. RDF uses a particular terminology for talking about the various parts of statements. Specifically, the
part that identifies the thing the statement is about (the Web page in this example) is called the subject. The
part that identifies the property or characteristic of the subject that the statement specifies (creator,
creation-date, or language in these examples) is called the predicate, and the part that identifies the value of
that property is called the object. So, taking the English statement

http://www.example.org/index.html has a creator whose value is John Smith

the RDF terms for the various parts of the statement are:

the subject is the URL http://www.example.org/index.html
the predicate is the word "creator"
the object is the phrase "John Smith"

However, while English is good for communicating between (English-speaking) humans, RDF is about making
machine-processable
statements. To make these kinds of statements suitable for processing by machines, two things are needed:

a system of machine-processable identifiers for identifying a subject, predicate, or object in a statement
without any possibility of confusion with a similar-looking identifier that might be used by someone else
on the Web.
a machine-processable language for representing these statements and exchanging them between
machines.

Fortunately, the existing Web architecture provides both these necessary facilities.

As illustrated earlier, the Web already provides one form of identifier, the Uniform Resource Locator (URL). A
URL was used in the original example to identify the Web page that John Smith created. A URL is a character
string that identifies a Web resource by representing its primary access mechanism (essentially, its network
"location"). However, it is also important to be able to record information about many things that, unlike Web
pages, do not have network locations or URLs.

The Web provides a more general form of identifier for these purposes, called the Uniform Resource Identifier
(URI). URLs are a particular kind of URI. All URIs share the property that different persons or organizations can
independently create them, and use them to identify things. However, URIs are not limited to identifying things
that have network locations, or use other computer access mechanisms. In fact, a URI can be created to refer
to anything that needs to be referred to in a statement, including

network-accessible things, such as an electronic document, an image, a service (e.g., "today's weather
report for Los Angeles"), or a group of other resources.
things that are not network-accessible, such as human beings, corporations, and bound books in a
library.
abstract concepts that do not physically exist, such as the concept of a "creator".

Because of this generality, RDF uses URIs as the basis of its mechanism for identifying the subjects,
predicates, and objects in statements. To be more precise, RDF uses URI references [URIS]. A URI reference
(or URIref) is a URI, together with an optional fragment identifier at the end. For example, the URI reference
http://www.example.org/index.html#section2 consists of the URI http://www.example.org/index.html and
(separated by the "#" character) the fragment identifier Section2. RDF URIrefs can contain Unicode
[UNICODE] characters (see [RDF-CONCEPTS]), allowing many languages to be reflected in URIrefs. RDF
defines a resource
as anything that is identifiable by a URI reference, so using URIrefs allows RDF to describe practically
anything, and to state relationships between such things as well. URIrefs and fragment identifiers are
discussed further in Appendix A, and in [RDF-CONCEPTS].

To represent RDF statements in a machine-processable way, RDF uses the Extensible Markup Language
[XML]. XML was designed to allow anyone to design their own document format and then write a document in
that format. RDF defines a specific XML markup language, referred to as RDF/XML, for use in representing
RDF information, and for exchanging it between machines. An example of RDF/XML was given in Section 1.
That example (Example 1) used tags such as <contact:fullName> and <contact:personalTitle> to delimit the
text content Eric Miller and Dr., respectively. Such tags allow programs written with an understanding of what
the tags mean to properly interpret that content. Both XML content and (with certain exceptions) tags can
contain Unicode [UNICODE] characters, allowing information from many languages to be directly represented.
Appendix B
provides further background on XML in general. The specific RDF/XML syntax used for RDF is described in

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

6 di 68 05/04/2008 18.46

more detail in Section 3, and is normatively defined in [RDF-SYNTAX]

2.2 The RDF Model

Section 2.1
has introduced RDF's basic statement concepts, the idea of using URI references to identify the things referred
to in RDF statements, and RDF/XML as a machine-processable way to represent RDF statements. With that
background, this section describes how RDF uses URIs to make statements about resources. The introduction
said that RDF was based on the idea of expressing simple statements about resources, where each statement
consists of a subject, a predicate, and an object. In RDF, the English statement:

http://www.example.org/index.html has a creator whose value is John Smith

could be represented by an RDF statement having:

a subject http://www.example.org/index.html
a predicate http://purl.org/dc/elements/1.1/creator
and an object http://www.example.org/staffid/85740

Note how URIrefs are used to identify not only the subject of the original statement, but also the predicate and
object, instead of using the words "creator" and "John Smith", respectively (some of the effects of using
URIrefs in this way will be discussed later in this section).

RDF models statements as nodes and arcs in a graph. RDF's graph model is defined in [RDF-CONCEPTS]. In
this notation, a statement is represented by:

a node for the subject
a node for the object
an arc for the predicate, directed from the subject node to the object node.

So the RDF statement above would be represented by the graph shown in Figure 2:

Figure 2: A Simple RDF Statement

Groups of statements are represented by corresponding groups of nodes and arcs. So, to reflect the additional
English statements

http://www.example.org/index.html has a creation-date whose value is August 16, 1999
http://www.example.org/index.html has a language whose value is English

in the RDF graph, the graph shown in Figure 3 could be used (using suitable URIrefs to name the properties
"creation-date" and "language"):

Figure 3: Several Statements About the Same Resource

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

7 di 68 05/04/2008 18.46

Figure 3 illustrates that objects in RDF statements may be either URIrefs, or constant values (called literals)
represented by character strings, in order to represent certain kinds of property values. (In the case of the
predicate http://purl.org/dc/elements/1.1/language the literal is an international standard two-letter code for
English.) Literals may not be used as subjects or predicates in RDF statements. In drawing RDF graphs, nodes
that are URIrefs are shown as ellipses, while nodes that are literals are shown as boxes. (The simple character
string literals used in these examples are called plain literals, to distinguish them from the typed literals to be
introduced in Section 2.4. The various kinds of literals that can be used in RDF statements are defined in
[RDF-CONCEPTS]. Both plain and typed literals can contain Unicode [UNICODE] characters, allowing
information from many languages to be directly represented.)

Sometimes it is not convenient to draw graphs when discussing them, so an alternative way of writing down the
statements, called triples, is also used. In the triples notation, each statement in the graph is written as a
simple triple of subject, predicate, and object, in that order. For example, the three statements shown in Figure
3 would be written in the triples notation as:

<http://www.example.org/index.html> <http://purl.org/dc/elements/1.1/creator> <http://www.example.org/s

<http://www.example.org/index.html> <http://www.example.org/terms/creation-date> "August 16, 1999" .

<http://www.example.org/index.html> <http://purl.org/dc/elements/1.1/language> "en" .

Each triple corresponds to a single arc in the graph, complete with the arc's beginning and ending nodes (the
subject and object of the statement). Unlike the drawn graph (but like the original statements), the triples
notation requires that a node be separately identified for each statement it appears in. So, for example,
http://www.example.org/index.html
appears three times (once in each triple) in the triples representation of the graph, but only once in the drawn
graph. However, the triples represent exactly the same information as the drawn graph, and this is a key point:
what is fundamental to RDF is the graph model of the statements. The notation used to represent or depict the
graph is secondary.

The full triples notation requires that URI references be written out completely, in angle brackets, which, as the
example above illustrates, can result in very long lines on a page. For convenience, the Primer uses a
shorthand way of writing triples (the same shorthand is also used in other RDF specifications). This shorthand
substitutes an XML qualified name (or QName) without angle brackets as an abbreviation for a full URI
reference (QNames are discussed further in Appendix B). A QName contains a prefix that has been assigned
to a namespace URI, followed by a colon, and then a local name. The full URIref is formed from the QName by
appending the local name to the namespace URI assigned to the prefix. So, for example, if the QName prefix
foo is assigned to the namespace URI http://example.org/somewhere/, then the QName foo:bar is shorthand
for the URIref http://example.org/somewhere/bar. Primer examples will also use several "well-known" QName
prefixes (without explicitly specifying them each time), defined as follows:

prefix rdf:, namespace URI: http://www.w3.org/1999/02/22-rdf-syntax-ns#
prefix rdfs:, namespace URI: http://www.w3.org/2000/01/rdf-schema#
prefix dc:, namespace URI: http://purl.org/dc/elements/1.1/
prefix owl:, namespace URI: http://www.w3.org/2002/07/owl#
prefix ex:, namespace URI: http://www.example.org/ (or http://www.example.com/)
prefix xsd:, namespace URI: http://www.w3.org/2001/XMLSchema#

Obvious variations on the "example" prefix ex: will also be used as needed in the examples, for instance,

prefix exterms:, namespace URI: http://www.example.org/terms/ (for terms used by an example organization),
prefix exstaff:, namespace URI: http://www.example.org/staffid/ (for the example organization's staff
identifiers),
prefix ex2:, namespace URI: http://www.domain2.example.org/ (for a second example organization), and so
on.

Using this new shorthand, the previous set of triples can be written as:

ex:index.html dc:creator exstaff:85740 .

ex:index.html exterms:creation-date "August 16, 1999" .

ex:index.html dc:language "en" .

Since
RDF uses URIrefs instead of words to name things in statements, RDF refers to a set of URIrefs (particularly a
set intended for a specific purpose) as a vocabulary. Often, the URIrefs in such vocabularies are organized so
that they can be represented as a set of QNames using a common prefix. That is, a common namespace
URIref will be chosen for all terms in a vocabulary, typically a URIref under the control of whoever is defining
the vocabulary. URIrefs that are contained in the vocabulary are formed by appending individual local names

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

8 di 68 05/04/2008 18.46

to the end of the common URIref. This forms a set of URIrefs with a common prefix. For instance, as illustrated
by the previous examples, an organization such as example.org might define a vocabulary consisting of
URIrefs starting with the prefix http://www.example.org/terms/ for terms it uses in its business, such as
"creation-date" or "product", and another vocabulary of URIrefs starting with http://www.example.org/staffid/
to identify its employees. RDF uses this same approach to define its own vocabulary of terms with special
meanings in RDF. The URIrefs in this RDF vocabulary all begin with
http://www.w3.org/1999/02/22-rdf-syntax-ns#, conventionally associated with the QName prefix rdf:. The
RDF Vocabulary Description Language (described in Section 5) defines an additional set of terms having
URIrefs that begin with http://www.w3.org/2000/01/rdf-schema#, conventionally associated with the QName
prefix rdfs:. (Where a specific QName prefix is commonly used in connection with a given set of terms in this
way, the QName prefix itself is sometimes used as the name of the vocabulary. For example, someone might
refer to "the rdfs: vocabulary".)

Using common URI prefixes provides a convenient way to organize the URIrefs for a related set of terms.
However, this is just a convention. The RDF model only recognizes full URIrefs; it does not "look inside"
URIrefs or use any knowledge about their structure. In particular, RDF does not assume there is any
relationship between URIrefs just because they have a common leading prefix (see Appendix A for further
discussion). Moreover, there is nothing that says that URIrefs with different leading prefixes cannot be
considered part of the same vocabulary. A particular organization, process, tool, etc. can define a vocabulary
that is significant for it, using URIrefs from any number of other vocabularies as part of its vocabulary.

In addition, sometimes an organization will use a vocabulary's namespace URIref as the URL of a Web
resource that provides further information about that vocabulary. For example, as noted earlier, the QName
prefix dc: will be used in Primer examples, associated with the namespace URIref
http://purl.org/dc/elements/1.1/. In fact, this refers to the Dublin Core vocabulary described in Section 6.1.
Accessing this namespace URIref in a Web browser will retrieve additional information about the Dublin Core
vocabulary (specifically, an RDF schema). However, this is also just a convention. RDF does not assume that
a namespace URI identifies a retrievable Web resource (see Appendix B for further discussion).

In the rest of the Primer, the term vocabulary will be used when referring to a set of URIrefs defined for some
specific purpose, such as the set of URIrefs defined by RDF for its own use, or the set of URIrefs defined by
example.org to identify its employees. The term namespace will be used only when referring specifically to the
syntactic concept of an XML namespace (or in describing the URI assigned to a prefix in a QName).

URIrefs from different vocabularies can be freely mixed in RDF graphs. For example, the graph in Figure 3
uses URIrefs from the exterms:, exstaff:, and dc: vocabularies. Also, RDF imposes no restrictions on how
many statements
using a given URIref as predicate can appear in a graph to describe the same resource. For example, if the
resource ex:index.html
had been created by the cooperative efforts of several staff members in addition to John Smith, example.org
might have written the statements:

ex:index.html dc:creator exstaff:85740 .

ex:index.html dc:creator exstaff:27354 .

ex:index.html dc:creator exstaff:00816 .

These examples of RDF statements begin to illustrate some of the advantages of using URIrefs as RDF's
basic way of identifying things. For instance, in the first statement, instead of identifying the creator of the Web
page by the character string "John Smith", he has been assigned a URIref, in this case (using a URIref based
on his employee number) http://www.example.org/staffid/85740 . An advantage of using a URIref in this
case is that the identification of the statement's subject can be more precise. That is, the creator of the page is
not the character string "John Smith", or any one of the thousands of people named John Smith, but the
particular John Smith associated with that URIref (whoever created the URIref defines the association).
Moreover, since there is a URIref to refer to John Smith, he is a full-fledged resource, and additional
information can be recorded about him, simply by adding additional RDF statements with John's URIref as the
subject. For example, Figure 4 shows some additional statements giving John's name and age.

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

9 di 68 05/04/2008 18.46

Figure 4: More Information About John Smith

These examples also illustrate that RDF uses URIrefs as predicates in RDF statements. That is, rather than
using character strings (or words) such as "creator" or "name" to identify properties, RDF uses URIrefs. Using
URIrefs to identify properties is important for a number of reasons. First, it distinguishes the properties one
person may use from different properties someone else may use that would otherwise be identified by the
same character string. For instance, in the example in Figure 4, example.org uses "name" to mean someone's
full name written out as a character string literal (e.g., "John Smith"), but someone else may intend "name" to
mean something different (e.g., the name of a variable in a piece of program text). A program encountering
"name" as a property identifier on the Web (or merging data from multiple sources) would not necessarily be
able to distinguish these uses. However, if example.org writes http://www.example.org/terms/name for its
"name" property, and the other person writes http://www.domain2.example.org/genealogy/terms/name for hers,
it is clear that there are distinct properties involved (even if a program cannot automatically determine the
distinct meanings). Also, using URIrefs to identify properties enables the properties to be treated as resources
themselves. Since properties are resources, additional information can be recorded about them (e.g., the
English description of what example.org means by "name"), simply by adding additional RDF statements with
the property's URIref as the subject.

Using URIrefs as subjects, predicates, and objects in RDF statements supports the development and use of
shared vocabularies on the Web, since people can discover and begin using vocabularies already used by
others to describe things, reflecting a shared understanding of those concepts. For example, in the triple

ex:index.html dc:creator exstaff:85740 .

the predicate dc:creator, when fully expanded as a URIref, is an unambiguous reference to the "creator"
attribute in the Dublin Core metadata attribute set (discussed further in Section 6.1), a widely-used set of
attributes (properties) for describing information of all kinds. The writer of this triple is effectively saying that the
relationship between the Web page (identified by http://www.example.org/index.html) and the creator of the
page (a distinct person, identified by http://www.example.org/staffid/85740) is exactly the concept identified
by http://purl.org/dc/elements/1.1/creator. Another person familiar with the Dublin Core vocabulary, or
who finds out what dc:creator
means (say by looking up its definition on the Web) will know what is meant by this relationship. In addition,
based on this understanding, people can write programs to behave in accordance with that meaning when
processing triples containing the predicate dc:creator.

Of course,
this depends on increasing the general use of URIrefs to refer to things instead of using literals; e.g., using
URIrefs like exstaff:85740 and dc:creator instead of character string literals like John Smith and creator.
Even then, RDF's use of URIrefs does not solve all identification problems because, for example, people can
still use different URIrefs to refer to the same thing. For this reason, it is a good idea to try to use terms from
existing vocabularies (such as the Dublin Core) where possible, rather than making up new terms that might
overlap with those of some other vocabulary. Appropriate vocabularies for use in specific application areas are
being developed all the time, as illustrated by the applications described in Section 6. However, even when
synonyms are created, the fact that these different URIrefs are used in the commonly-accessible "Web space"
provides the opportunity both to identify equivalences among these different references, and to migrate toward
the use of common references.

In addition, it is important to distinguish between any meaning that RDF itself associates with terms (such as
dc:creator in the previous example) used in RDF statements and additional, externally-defined meaning that
people (or programs written by those people) might associate with those terms. As a language, RDF directly
defines only the graph syntax of subject, predicate, and object triples, certain meanings associated with
URIrefs in the rdf:
vocabulary, and certain other concepts to be described later. These things are normatively defined in
[RDF-CONCEPTS] and [RDF-SEMANTICS]. However, RDF does not define the meanings of terms from other
vocabularies, such as dc:creator, that might be used in RDF statements. Specific vocabularies will be created,

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

10 di 68 05/04/2008 18.46

with specific meanings assigned to the URIrefs defined in them, externally to RDF. RDF statements using
URIrefs from these vocabularies may convey the specific meanings associated with those terms to people
familiar with these vocabularies, or to RDF applications written to process these vocabularies, without
conveying any of these meanings to an arbitrary RDF application not specifically written to process these
vocabularies.

For example, people can associate meaning with a triple such as

ex:index.html dc:creator exstaff:85740 .

based on the meaning they associate with the appearance of the word "creator" as part of the URIref
dc:creator, or based on their understanding of the specific definition of dc:creator in the Dublin Core
vocabulary. However, as far as an arbitrary RDF application is concerned the triple might as well be something
like

fy:joefy.iunm ed:dsfbups fytubgg:85740 .

as far as any built-in meaning is concerned. Similarly, any natural language text describing the meaning of
dc:creator
that might be found on the Web provides no additional meaning that an arbitrary RDF application can directly
use.

Of course, URIrefs from a particular vocabulary can be used in RDF statements even though a given
application may not be able to associate any special meanings with them. For example, generic RDF software
would recognize that the above expression is an RDF statement, that ed:dsfbups is the predicate, and so on. It
will simply not associate with the triple any special meaning that the vocabulary developer might have
associated with a URIref like ed:dsfbups. Moreover, based on their understanding of a given vocabulary,
people can write RDF applications to behave in accordance with the special meanings assigned to URIrefs
from that vocabulary, even though that meaning will not be accessible to RDF applications not written in that
way.

The result of all this is that RDF provides a way to make statements that applications can more easily process.
An application cannot actually "understand" such statements, as noted already, any more than a database
system "understands" terms like "employee" or "salary" in processing a query like SELECT NAME FROM EMPLOYEE
WHERE SALARY > 35000.
However, if an application is appropriately written, it can deal with RDF statements in a way that makes it seem
like it does understand them,
just as a database system and its applications can do useful work in processing employee and payroll
information without understanding "employee" and "payroll". For example, a user could search the Web for all
book reviews and create an average rating for each book. Then, the user could put that information back on
the Web. Another Web site could take that list of book rating averages and create a "Top Ten Highest Rated
Books" page. Here, the availability and use of a shared vocabulary about ratings, and a shared group of
URIrefs identifying the books they apply to, allows individuals to build a mutually-understood and
increasingly-powerful (as additional contributions are made) "information base" about books on the Web. The
same principle applies to the vast amounts of information that people create about thousands of subjects every
day on the Web.

RDF statements are similar to a number of other formats for recording information, such as:

entries in a simple record or catalog listing describing the resource in a data processing system.
rows in a simple relational database.
simple assertions in formal logic

and information in these formats can be treated as RDF statements, allowing RDF to be used to integrate data
from many sources.

2.3 Structured Property Values and Blank Nodes

Things would be very simple if the only types of information to be recorded about things were obviously in the
form of the simple RDF statements illustrated so far. However, most real-world data involves structures that are
more complicated than that, at least on the surface. For instance, in the original example, the date the Web
page was created is recorded as a single exterms:creation-date property, with a plain literal as its value.
However, suppose the value of the exterms:creation-date property needed to record the month, day, and year
as separate pieces of information? Or, in the case of John Smith's personal information, suppose John's
address was being described. The whole address could be written out as a plain literal, as in the triple

exstaff:85740 exterms:address "1501 Grant Avenue, Bedford, Massachusetts 01730" .

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

11 di 68 05/04/2008 18.46

However, suppose John's address needed to be recorded as a structure consisting of separate street, city,
state, and postal code values? How would this be done in RDF?

Structured information like this is represented in RDF by considering the aggregate thing to be described (like
John Smith's address) as a resource, and then making statements about that new resource. So, in the RDF
graph, in order to break up John Smith's address into its component parts, a new node is created to represent
the concept of John Smith's address, with a new URIref to identify it, say
http://www.example.org/addressid/85740 (abbreviated as exaddressid:85740). RDF statements (additional
arcs and nodes) can then be written with that node as the subject, to represent the additional information,
producing the graph shown in Figure 5:

Figure 5: Breaking Up John's Address

or the triples:

exstaff:85740 exterms:address exaddressid:85740 .
exaddressid:85740 exterms:street "1501 Grant Avenue" .
exaddressid:85740 exterms:city "Bedford" .
exaddressid:85740 exterms:state "Massachusetts" .
exaddressid:85740 exterms:postalCode "01730" .

This way of representing structured information in RDF can involve generating numerous "intermediate"
URIrefs such as exaddressid:85740
to represent aggregate concepts such as John's address. Such concepts may never need to be referred to
directly from outside a particular graph, and hence may not require "universal" identifiers. In addition, in the
drawing of the graph representing the group of statements shown in Figure 5, the URIref assigned to identify
"John Smith's address" is not really needed, since the graph could just as easily have been drawn as in Figure
6:

Figure 6: Using a Blank Node

Figure 6, which is a perfectly good RDF graph, uses a node without a URIref to stand for the concept of "John
Smith's address". This blank node
serves its purpose in the drawing without needing a URIref, since the node itself provides the necessary
connectivity between the various other parts of the graph. (Blank nodes were called anonymous resources in
[RDF-MS].) However, some form of explicit identifier for that node is needed in order to represent this graph as
triples. To see this, trying to write the triples corresponding to what is shown in Figure 6 would produce

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

12 di 68 05/04/2008 18.46

something like:

exstaff:85740 exterms:address ??? .
??? exterms:street "1501 Grant Avenue" .
??? exterms:city "Bedford" .
??? exterms:state "Massachusetts" .
??? exterms:postalCode "01730" .

where ??? stands for something that indicates the presence of the blank node. Since a complex graph might
contain more than one blank node, there also needs to be a way to differentiate between these different blank
nodes in a triples representation of the graph. As a result, triples use blank node identifiers, having the form
_:name, to indicate the presence of blank nodes. For instance, in this example a blank node identifier
_:johnaddress might be used to refer to the blank node, in which case the resulting triples might be:

exstaff:85740 exterms:address _:johnaddress .
_:johnaddress exterms:street "1501 Grant Avenue" .
_:johnaddress exterms:city "Bedford" .
_:johnaddress exterms:state "Massachusetts" .
_:johnaddress exterms:postalCode "01730" .

In a triples representation of a graph, each distinct blank node in the graph is given a different blank node
identifier. Unlike URIrefs and literals, blank node identifiers are not considered to be actual parts of the RDF
graph (this can be seen by looking at the drawn graph in Figure 6 and noting that the blank node has no blank
node identifier). Blank node identifiers are just a way of representing the blank nodes in a graph (and
distinguishing one blank node from another) when the graph is written in triple form. Blank node identifiers also
have significance only within the triples representing a single graph (two different graphs with the same number
of blank nodes might independently use the same blank node identifiers to distinguish them, and it would be
incorrect to assume that blank nodes from different graphs having the same blank node identifiers are the
same). If it is expected that a node in a graph will need to be referenced from outside the graph, a URIref
should be assigned to identify it. Finally, because blank node identifiers represent (blank) nodes, rather than
arcs, in the triple form of an RDF graph, blank node identifiers may only appear as subjects or objects in triples;
blank node identifiers may not be used as predicates in triples.

The beginning of this section noted that aggregate structures, like John Smith's address, can be represented
by considering the aggregate thing to be described as a separate resource, and then making statements about
that new resource. This example illustrates an important aspect of RDF: RDF directly represents only binary
relationships, e.g. the relationship between John Smith and the literal representing his address. Representing
the relationship between John and the group of separate components of this address involves dealing with an
n-ary
(n-way) relationship (in this case, n=5) between John and the street, city, state, and postal code components.
In order to represent such structures directly in RDF (e.g., considering the address as a group of street, city,
state, and postal code components), this n-way relationship must be broken up into a group of separate binary
relationships. Blank nodes provide one way to do this. For each n-ary relationship, one of the participants is
chosen as the subject of the relationship (John in this case), and a blank node is created to represent the rest
of the relationship (John's address in this case). The remaining participants in the relationship (such as the city
in this example) are then represented as separate properties of the new resource represented by the blank
node.

Blank nodes also provide a way to more accurately make statements about resources that may not have URIs,
but that are described in terms of relationships with other resources that do have URIs. For example, when
making statements about a person, say Jane Smith, it may seem natural to use a URI based on that person's
email address as her URI, e.g., mailto:jane@example.org. However, this approach can cause problems. For
example, it may be necessary to record information both about Jane's mailbox (e.g., the server it is on) as well
as about Jane herself
(e.g., her current physical address), and using a URIref for Jane based on her email address makes it difficult
to know whether it is Jane or her mailbox that is being described. The same problem exists when a company's
Web page URL, say http://www.example.com/, is used as the URI of the company itself. Once again, it may be
necessary to record information about the Web page itself (e.g., who created it and when) as well as about the
company, and using http://www.example.com/ as an identifier for both makes it difficult to know which of these
is the actual subject.

The fundamental problem is that using Jane's mailbox as a stand-in for Jane is not really accurate: Jane and
her mailbox are not the same thing, and hence they should be identified differently. When Jane herself does
not have a URI, a blank node provides a more accurate way of modeling this situation. Jane can be
represented by a blank node, and that blank node used as the subject of a statement with exterms:mailbox as
the property and the URIref mailto:jane@example.org as its value. The blank node could also be described
with an rdf:type property having a value of exterms:Person (types are discussed in more detail in the following
sections), an exterms:name property having a value of "Jane Smith", and any other descriptive information that
might be useful, as shown in the following triples:

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

13 di 68 05/04/2008 18.46

_:jane exterms:mailbox <mailto:jane@example.org> .
_:jane rdf:type exterms:Person .
_:jane exterms:name "Jane Smith" .
_:jane exterms:empID "23748" .
_:jane exterms:age "26" .

(Note that mailto:jane@example.org is written within angle brackets in the first triple. This is because
mailto:jane@example.org is a full URIref in the mailto URI scheme, rather than a QName abbreviation, and full
URIrefs must be enclosed in angle brackets in the triples notation.)

This says, accurately, that "there is a resource of type exterms:Person, whose electronic mailbox is identified
by mailto:jane@example.org, whose name is Jane Smith, etc." That is, the blank node can be read as "there is
a resource". Statements with that blank node as subject then provide information about the characteristics of
that resource.

In practice, using blank nodes instead of URIrefs in these cases does not change the way this kind of
information is handled very much. For example, if it is known that an email address uniquely identifies
someone at example.org (particularly if the address is unlikely to be reused), that fact can still be used to
associate information about that person from multiple sources, even though the email address is not the
person's URI. In this case, if some RDF is found on the Web that describes a book, and gives the author's
contact information as mailto:jane@example.org, it might be reasonable, combining this new information with
the previous set of triples, to conclude that the author's name is Jane Smith. The point is that saying something
like "the author of the book is mailto:jane@example.org" is typically a shorthand for "the author of the book is
someone whose mailbox is mailto:jane@example.org". Using a blank node to represent this "someone" is just
a more accurate way to represent the real world situation. (Incidentally, some RDF-based schema languages
allow specifying that certain properties are unique identifiers of the resources they describe. This is discussed
further in Section 5.5.)

Using blank nodes in this way can also help avoid the use of literals in what might be inappropriate situations.
For example, in describing Jane's book, lacking a URIref to identify the author, the publisher might have written
(using the publisher's own ex2terms: vocabulary):

ex2terms:book78354 rdf:type ex2terms:Book .
ex2terms:book78354 ex2terms:author "Jane Smith" .

However, the author of the book is not really the character string "Jane Smith", but a person whose name is
Jane Smith. The same information might be more accurately given by the publisher using a blank node, as:

ex2terms:book78354 rdf:type ex2terms:Book .
ex2terms:book78354 ex2terms:author _:author78354 .
_:author78354 rdf:type ex2terms:Person .
_:author78354 ex2terms:name "Jane Smith" .

This essentially says "resource ex2terms:book78354 is of type ex2terms:Book, and its author is a resource of
type ex2terms:Person, whose name is Jane Smith." Of course, in this particular case the publisher might
instead have assigned its own URIrefs to its authors instead of using blank nodes to identify them, in order to
encourage external references to its authors.

Finally, the example above giving Jane's age as 26 illustrates the fact that sometimes the value of a property
may appear to be simple, but actually may be more complex. In this case, Jane's age is actually 26 years, but
the units information (years) is not explicitly given. Such information is often omitted in contexts where it can be
safely assumed that anyone accessing the property value will understand the units being used. However, in the
wider context of the Web, it is generally not safe to make this assumption. For example, a U.S. site might give
a weight value in pounds, but someone accessing that data from outside the U.S. might assume that weights
are given in kilograms. In general, careful consideration should be given to explicitly representing units and
similar information. This issue is discussed further in Section 4.4, which describes an RDF feature for
representing such information as structured values, as well as some other techniques for representing such
information.

2.4 Typed Literals

The last section described how to handle situations in which property values represented by plain literals had
to be broken up into structured values to represent the individual parts of those literals. Using this approach,
instead of, say, recording the date a Web page was created as a single exterms:creation-date property, with a
single plain literal as its value, the value would be represented as a structure consisting of the month, day, and
year as separate pieces of information, using separate plain literals to represent the corresponding values.
However, so far, all constant values that serve as objects in RDF statements have been represented by these
plain (untyped) literals, even when the intent is probably for the value of the property to be a number (e.g., the
value of a year or age property) or some other kind of more specialized value.

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

14 di 68 05/04/2008 18.46

For example, Figure 4
illustrated an RDF graph recording information about John Smith. That graph recorded the value of John
Smith's exterms:age property as the plain literal "27", as shown in Figure 7:

Figure 7: Representing John Smith's Age

In this case, the hypothetical organization example.org probably intends for "27" to be interpreted as a number,
rather than as the string consisting of the character "2" followed by the character "7" (since the literal
represents the value of an "age" property). However, there is no information in Figure 7's graph that explicitly
indicates that "27" should be interpreted as a number. Similarly, example.org also probably intends for "27" to
be interpreted as a decimal number, i.e., the value twenty seven, rather than, say, as an octal number, i.e., the
value twenty three. However, once again there is no information in Figure 7's graph that explicitly indicates this.
Specific applications might be written with the understanding that they should interpret values of the
exterms:age
property as decimal numbers, but this would mean that proper interpretation of this RDF would depend on
information not explicitly provided in the RDF graph, and hence on information that would not necessarily be
available to other applications that might need to interpret this RDF.

The common practice in programming languages or database systems is to provide this additional information
about how to interpret a literal by associating a datatype with the literal, in this case, a datatype like decimal or
integer. An application that understands the datatype then knows, for example, whether the literal "10" is
intended to represent the number ten, the number two, or the string consisting of the character "1" followed by
the character "0", depending on whether the specified datatype is integer, binary, or string. (More specialized
datatypes could also be used to include the units information mentioned at the end of Section 2.3, e.g., a
datatype integerYears, although the Primer will not elaborate on this idea.) In RDF, typed literals are used to
provide this kind of information.

An RDF typed literal is formed by pairing a string with a URIref that identifies a particular datatype. This results
in a single literal node in the RDF graph with the pair as the literal. The value represented by the typed literal is
the value that the specified datatype associates with the specified string. For example, using a typed literal,
John Smith's age could be described as being the integer number 27 using the triple:

<http://www.example.org/staffid/85740> <http://www.example.org/terms/age> "27"^^<http://www.w3.org/200

or, using the QName simplification for writing long URIs:

exstaff:85740 exterms:age "27"^^xsd:integer .

or as shown in Figure 8:

Figure 8: A Typed Literal for John Smith's Age

Similarly, in the graph shown in Figure 3 describing information about a Web page, the value of the page's
exterms:creation-date
property was written as the plain literal "August 16, 1999". However, using a typed literal, the creation date of
the Web page could be explicitly described as being the date August 16, 1999, using the triple:

ex:index.html exterms:creation-date "1999-08-16"^^xsd:date .

or as shown in Figure 9:

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

15 di 68 05/04/2008 18.46

Figure 9: A Typed Literal for a Web Page's Creation Date

Unlike typical programming languages and database systems, RDF has no built-in set of datatypes of its own,
such as datatypes for integers, reals, strings, or dates. Instead, RDF typed literals simply provide a way to
explicitly indicate, for a given literal, what datatype should be used to interpret it. The datatypes used in typed
literals are defined externally to RDF, and identified by their datatype URIs. (There is one exception: RDF
defines a built-in datatype with the URIref rdf:XMLLiteral to represent XML content as a literal value. This
datatype is defined in [RDF-CONCEPTS], and its use is described in Section 4.5.) For instance, the examples
in Figure 8 and Figure 9 use the datatypes integer and date from the XML Schema datatypes defined in XML
Schema Part 2: Datatypes [XML-SCHEMA2]. An advantage of this approach is that it gives RDF the flexibility
to directly represent information coming from different sources without the need to perform type conversions
between these sources and a native set of RDF datatypes. (Type conversions would still be required when
moving information between systems having different sets of datatypes, but RDF would impose no extra
conversions into and out of a native set of RDF datatypes.)

RDF datatype concepts are based on a conceptual framework from XML Schema datatypes [XML-SCHEMA2],
as described in RDF Concepts and Abstract Syntax [RDF-CONCEPTS]. This conceptual framework defines a
datatype as consisting of:

A set of values, called the value space, that literals of the datatype are intended to represent. For
example, for the XML Schema datatype xsd:date, this set of values is a set of dates.
A set of character strings, called the lexical space, that the datatype uses to represent its values. This set
determines which character strings can legally be used to represent literals of this datatype. For example,
the datatype xsd:date defines 1999-08-16 as being a legal way to write a literal of this type (as opposed,
say, to August 16, 1999). As defined in [RDF-CONCEPTS], the lexical space of a datatype is a set of
Unicode [UNICODE] strings, allowing information from many languages to be directly represented.
A lexical-to-value mapping
from the lexical space to the value space. This determines the value that a given character string from the
lexical space represents for this particular datatype. For example, the lexical-to-value mapping for
datatype xsd:date determines that, for this datatype, the string 1999-08-16 represents the date August 16,
1999. The lexical-to-value mapping is a factor because the same character string may represent different
values for different datatypes.

Not all datatypes are suitable for use in RDF. For a datatype to be suitable for use in RDF, it must conform to
the conceptual framework just described. This basically means that, given a character string, the datatype must
unambiguously define whether or not the string is in its lexical space, and what value in its value space the
string represents. For example, the basic XML Schema datatypes such as xsd:string, xsd:boolean, xsd:date,
etc. are suitable for use in RDF. However, some of the built-in XML Schema datatypes are not suitable for use
in RDF. For example, xsd:duration does not have a well-defined value space, and xsd:QName requires an
enclosing XML document context. Lists of the XML Schema datatypes that are currently considered suitable
and unsuitable for use in RDF are given in [RDF-SEMANTICS].

Since the value that a given typed literal denotes is defined by the typed literal's datatype, and, with the
exception of rdf:XMLLiteral, RDF does not define any datatypes, the actual interpretation of a typed literal
appearing in an RDF graph (e.g., determining the value it denotes) must be performed by software that is
written to correctly process not only RDF, but the typed literal's datatype as well. Effectively, this software must
be written to process an extended language that includes not only RDF, but also the datatype, as part of its
built-in vocabulary. This raises the issue of which datatypes will be generally available in RDF software.
Generally, the XML Schema datatypes that are listed as suitable for use in RDF in [RDF-SEMANTICS] have a
"first among equals" status in RDF. As noted already, the examples in Figure 8 and Figure 9 used some of
these XML Schema datatypes, and the Primer will be using these datatypes in most of its other examples of
typed literals as well (for one thing, XML Schema datatypes already have assigned URIrefs that can be used to
refer to them, specified in [XML-SCHEMA2]). These XML Schema datatypes are treated no differently than any
other datatype, but they are expected to be the most widely used, and therefore the most likely to be
interoperable among different software. As a result, it is expected that much RDF software will also be written
to process these datatypes. However, RDF software could be written to process other sets of datatypes as
well, assuming they were determined to be suitable for use with RDF, as described already.

In general, RDF software may be called on to process RDF data that contains references to datatypes that the
software has not been written to process, in which case there are some things the software will not be able to

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

16 di 68 05/04/2008 18.46

do. For one thing, with the exception of rdf:XMLLiteral, RDF itself does not define the URIrefs that identify
datatypes. As a result, RDF software, unless it has been written to recognize specific URIrefs, will not be able
to determine whether or not a URIref written in a typed literal actually identifies a datatype. Moreover, even
when a URIref does identify a datatype, RDF itself does not define the validity of pairing that datatype with a
particular literal.
This validity can only be determined by software written to correctly process that particular datatype.

For example, the typed literal in the triple:

exstaff:85740 exterms:age "pumpkin"^^xsd:integer .

or the graph shown in Figure 10:

Figure 10: An Invalid Typed Literal for John Smith's Age

is valid RDF, but obviously an error as far as the xsd:integer datatype is concerned, since "pumpkin" is not
defined as being in the lexical space of xsd:integer. RDF software not written to process the xsd:integer
datatype would not be able to recognize this error.

However, proper use of RDF typed literals provides more information about the intended interpretation of literal
values, and hence makes RDF statements a better means of information exchange among applications.

2.5 Concepts Summary

Taken as a whole, RDF is basically simple: nodes-and-arcs diagrams interpreted as statements about things
identified by URIrefs. This section has presented an introduction to these concepts. As noted earlier, the
normative (i.e., definitive) RDF specification describing these concepts is RDF Concepts and Abstract Syntax
[RDF-CONCEPTS], which should be consulted for further information. The formal semantics (meaning) of
these concepts is defined in the (normative) RDF Semantics [RDF-SEMANTICS] document.

However, in addition to the basic techniques for describing things using RDF statements discussed so far, it
should be clear that people or organizations also need a way to describe the vocabularies (terms) they intend
to use in those statements, specifically, vocabularies for:

describing types of things (like exterms:Person)
describing properties (like exterms:age and exterms:creation-date), and
describing the types of things that can serve as the subjects or objects of statements involving those
properties (such as specifying that the value of an exterms:age property should always be an
xsd:integer).

The basis for describing such vocabularies in RDF is the RDF Vocabulary Description Language 1.0: RDF
Schema [RDF-VOCABULARY], which will be described in Section 5.

Additional background on the basic ideas underlying RDF, and its role in providing a general language for
describing Web information, can be found in [WEBDATA]. RDF draws upon ideas from knowledge
representation, artificial intelligence, and data management, including Conceptual Graphs, logic-based
knowledge representation, frames, and relational databases. Some possible sources of background
information on these subjects include [SOWA], [CG], [KIF], [HAYES], [LUGER], and [GRAY].

3. An XML Syntax for RDF: RDF/XML

As described in Section 2, RDF's conceptual model is a graph. RDF provides an XML syntax for writing down
and exchanging RDF graphs, called RDF/XML. Unlike triples, which are intended as a shorthand notation,
RDF/XML is the normative syntax for writing RDF. RDF/XML is defined in the RDF/XML Syntax Specification
[RDF-SYNTAX]. This section describes this RDF/XML syntax.

3.1 Basic Principles

The basic ideas behind the RDF/XML syntax can be illustrated using some of the examples presented already.
Take as an example the English statement:

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

17 di 68 05/04/2008 18.46

http://www.example.org/index.html has a creation-date whose value is August 16, 1999

The RDF graph for this single statement, after assigning a URIref to the creation-date property, is shown in
Figure 11:

Figure 11: Describing a Web Page's Creation Date

with a triple representation of:

ex:index.html exterms:creation-date "August 16, 1999" .

(Note that a typed literal is not used for the date value in this example. Representing typed literals in RDF/XML
will be described later in this section.)

Example 2 shows the RDF/XML syntax corresponding to the graph in Figure 11:

Example 2: RDF/XML for the Web Page's Creation Date
1. <?xml version="1.0"?>
2. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3. xmlns:exterms="http://www.example.org/terms/">

4. <rdf:Description rdf:about="http://www.example.org/index.html">
5. <exterms:creation-date>August 16, 1999</exterms:creation-date>
6. </rdf:Description>

7. </rdf:RDF>

(Line numbers are added to help in explaining the example.)

This seems like a lot of overhead. It is easier to understand what is going on by considering each part of this
XML in turn (a brief introduction to XML is provided in Appendix B).

Line 1, <?xml version="1.0"?>, is the XML declaration, which indicates that the following content is XML, and
what version of XML it is.

Line 2 begins an rdf:RDF
element. This indicates that the following XML content (starting here and ending with the </rdf:RDF> in line 7)
is intended to represent RDF. Following the rdf:RDF on this same line is an XML namespace declaration,
represented as an xmlns attribute of the rdf:RDF start-tag. This declaration specifies that all tags in this content
prefixed with rdf: are part of the namespace identified by the URIref
http://www.w3.org/1999/02/22-rdf-syntax-ns#. URIrefs beginning with the string
http://www.w3.org/1999/02/22-rdf-syntax-ns# are used for terms from the RDF vocabulary.

Line 3 specifies another XML namespace declaration, this time for the prefix exterms:. This is expressed as
another xmlns attribute of the rdf:RDF element, and specifies that the namespace URIref
http://www.example.org/terms/ is to be associated with the exterms: prefix. URIrefs beginning with the string
http://www.example.org/terms/
are used for terms from the vocabulary defined by the example organization, example.org. The ">" at the end
of line 3 indicates the end of the rdf:RDF start-tag. Lines 1-3 are general "housekeeping" necessary to indicate
that this is RDF/XML content, and to identify the namespaces being used within the RDF/XML content.

Lines 4-6 provide the RDF/XML for the specific statement shown in Figure 11. An obvious way to talk about
any RDF statement is to say it is a description, and that it is about the subject of the statement (in this case,
about http://www.example.org/index.html), and this is the way RDF/XML represents the statement. The
rdf:Description start-tag in line 4 indicates the start of a description of a resource, and goes on to identify the
resource the statement is about (the subject of the statement) using the rdf:about attribute to specify the
URIref of the subject resource. Line 5 provides a property element, with the QName exterms:creation-date as
its tag, to represent the predicate and object of the statement. The QName exterms:creation-date is chosen
so that appending the local name creation-date to the URIref of the exterms: prefix
(http://www.example.org/terms/) gives the statement's predicate URIref
http://www.example.org/terms/creation-date. The content of this property element is the object of the

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

18 di 68 05/04/2008 18.46

statement, the plain literal August 19, 1999 (the value of the creation-date property of the subject resource).
The property element is nested within the containing rdf:Description element, indicating that this property
applies to the resource specified in the rdf:about attribute of the rdf:Description element. Line 6 indicates the
end of this particular rdf:Description element.

Finally, Line 7 indicates the end of the rdf:RDF element started on line 2. Using an rdf:RDF element to enclose
RDF/XML content is optional in situations where the XML can be identified as RDF/XML by context. This is
discussed further in [RDF-SYNTAX]. However, it does not hurt to provide the rdf:RDF element in any case, and
Primer examples will generally (but not always) provide one.

Example 2
illustrates the basic ideas used by RDF/XML to encode an RDF graph as XML elements, attributes, element
content, and attribute values. The URIrefs of predicates (as well as some nodes) are written as XML QNames,
consisting of a short prefix denoting a namespace URI, together with a local name denoting a
namespace-qualified element or attribute, as described in Appendix B. The (namespace URIref, local name)
pair is chosen so that concatenating them forms the URIref of the original node or predicate. The URIrefs of
subject nodes are written as XML attribute values (URIrefs of object nodes may sometimes be written as
attribute values as well). Literal nodes (which are always object nodes) become element text content or
attribute values. (Many of these options are described later in the Primer; all of these options are described in
[RDF-SYNTAX].)

An RDF graph consisting of multiple statements can be represented in RDF/XML by using RDF/XML similar to
Lines 4-6 in Example 2
to separately represent each statement. For example, to write the following two statements:

ex:index.html exterms:creation-date "August 16, 1999" .
ex:index.html dc:language "en" .

the RDF/XML in Example 3 could be used:

Example 3: RDF/XML for Two Statements
1. <?xml version="1.0"?>
2. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3. xmlns:dc="http://purl.org/dc/elements/1.1/"
4. xmlns:exterms="http://www.example.org/terms/">

5. <rdf:Description rdf:about="http://www.example.org/index.html">
6. <exterms:creation-date>August 16, 1999</exterms:creation-date>
7. </rdf:Description>

8. <rdf:Description rdf:about="http://www.example.org/index.html">
9. <dc:language>en</dc:language>
10. </rdf:Description>

11. </rdf:RDF>

Example 3 is the same as Example 2, with the addition of a second rdf:Description element (in lines 8-10) to
represent the second statement. (An additional namespace declaration is also given in line 3 to identify the
additional namespace used in this statement.) An arbitrary number of additional statements could be written in
the same way, using a separate rdf:Description element for each additional statement. As Example 3
illustrates, once the overhead of writing the XML and namespace declarations is dealt with, writing each
additional RDF statement in RDF/XML is both straightforward and not too complicated.

The RDF/XML syntax provides a number of abbreviations to make common uses easier to write. For example,
it is typical for the same resource to be described with several properties and values at the same time, as in
Example 3, where the resource ex:index.html is the subject of several statements. To handle such cases,
RDF/XML allows multiple property elements representing those properties to be nested within the
rdf:Description
element that identifies the subject resource. For example, to represent the following group of statements about
http://www.example.org/index.html:

ex:index.html dc:creator exstaff:85740 .
ex:index.html exterms:creation-date "August 16, 1999" .
ex:index.html dc:language "en" .

whose graph (the same as Figure 3) is shown in Figure 12:

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

19 di 68 05/04/2008 18.46

Figure 12: Several Statements About the Same Resource

the RDF/XML shown in Example 4 could be written:

Example 4: Abbreviating Multiple Properties
1. <?xml version="1.0"?>
2. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3. xmlns:dc="http://purl.org/dc/elements/1.1/"
4. xmlns:exterms="http://www.example.org/terms/">

5. <rdf:Description rdf:about="http://www.example.org/index.html">
6. <exterms:creation-date>August 16, 1999</exterms:creation-date>
7. <dc:language>en</dc:language>
8. <dc:creator rdf:resource="http://www.example.org/staffid/85740"/>
9. </rdf:Description>

10. </rdf:RDF>

Compared with the previous two examples, Example 4 adds an additional dc:creator property element (in line
8). In addition, the property elements for the three properties whose subject is
http://www.example.org/index.html are nested within a single rdf:Description element identifying that
subject, rather than writing a separate rdf:Description element for each statement.

Line 8 also introduces a new form of property element. The dc:language element in line 7 is similar to the
exterms:creation-date element used in Example 2. Both these elements represent properties with plain literals
as property values, and such elements are written by enclosing the literal within start- and end-tags
corresponding to the property name. However, the dc:creator element on line 8 represents a property whose
value is another resource, rather than a literal. If the URIref of this resource were written as a plain literal within
start- and end-tags in the same way as the literal values of the other elements, this would say that the value of
the dc:creator element was the character string http://www.example.org/staffid/85740, rather than the
resource identified by that literal interpreted as a URIref. In order to indicate the difference, the dc:creator
element is written using what XML calls an empty-element tag (it has no separate end-tag), and the property
value is written using an rdf:resource attribute within that empty element. The rdf:resource attribute indicates
that the property element's value is another resource, identified by its URIref. Because the URIref is being used
as an attribute value, RDF/XML requires the URIref to be written out (as an absolute or relative URIref), rather
than abbreviating it as a QName as was done in writing element and attribute names (absolute and relative
URIrefs are discussed in Appendix A).

It is important to understand that the RDF/XML in Example 4 is an abbreviation. The RDF/XML in Example 5,
in which each statement is written separately, describes exactly the same RDF graph (the graph of Figure 12):

Example 5: Writing Example 4 as Separate Statements
 <?xml version="1.0"?>
 <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:exterms="http://www.example.org/terms/">

 <rdf:Description rdf:about="http://www.example.org/index.html">
 <exterms:creation-date>August 16, 1999</exterms:creation-date>
 </rdf:Description>

 <rdf:Description rdf:about="http://www.example.org/index.html">
 <dc:language>en</dc:language>
 </rdf:Description>

 <rdf:Description rdf:about="http://www.example.org/index.html">
 <dc:creator rdf:resource="http://www.example.org/staffid/85740"/>
 </rdf:Description>

 </rdf:RDF>

The following sections will describe a few additional RDF/XML abbreviations. [RDF-SYNTAX] provides a more

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

20 di 68 05/04/2008 18.46

thorough description of the abbreviations that are available.

RDF/XML can also represent graphs that include nodes that have no URIrefs, i.e., the blank nodes described
in Section 2.3. For example, Figure 13 (taken from [RDF-SYNTAX]) shows a graph saying "the document
'http://www.w3.org/TR/rdf-syntax-grammar' has a title 'RDF/XML Syntax Specification (Revised)' and has an
editor, the editor has a name 'Dave Beckett' and a home page 'http://purl.org/net/dajobe/' ".

Figure 13: A Graph Containing a Blank Node

This illustrates an idea discussed in Section 2.3: the use of a blank node to represent something that does not
have a URIref, but can be described in terms of other information. In this case, the blank node represents a
person, the editor of the document, and the person is described by his name and home page.

RDF/XML provides several ways to represent graphs containing blank nodes. These are all described in
[RDF-SYNTAX]. The approach illustrated here, which is the most direct approach, is to assign a blank node
identifier
to each blank node. A blank node identifier serves to identify a blank node within a particular RDF/XML
document but, unlike a URIref, is unknown outside the document in which it is assigned. A blank node is
referred to in RDF/XML using an rdf:nodeID attribute, with a blank node identifier as its value, in places where
the URIref of a resource would otherwise appear. Specifically, a statement with a blank node as its subject can
be written in RDF/XML using an rdf:Description element with an rdf:nodeID attribute instead of an rdf:about
attribute. Similarly, a statement with a blank node as its object can be written using a property element with an
rdf:nodeID attribute instead of an rdf:resource attribute. Using rdf:nodeID, Example 6 shows the RDF/XML
corresponding to Figure 13:

Example 6: RDF/XML Describing a Blank Node
1. <?xml version="1.0"?>
2. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3. xmlns:dc="http://purl.org/dc/elements/1.1/"
4. xmlns:exterms="http://example.org/stuff/1.0/">

5. <rdf:Description rdf:about="http://www.w3.org/TR/rdf-syntax-grammar">
6. <dc:title>RDF/XML Syntax Specification (Revised)</dc:title>
7. <exterms:editor rdf:nodeID="abc"/>
8. </rdf:Description>

9. <rdf:Description rdf:nodeID="abc">
10. <exterms:fullName>Dave Beckett</exterms:fullName>
11. <exterms:homePage rdf:resource="http://purl.org/net/dajobe/"/>
12. </rdf:Description>

13. </rdf:RDF>

In Example 6, the blank node identifier abc
is used in line 9 to identify the blank node as the subject of several statements, and is used in line 7 to indicate
that the blank node is the value of a resource's exterms:editor property. The advantage of using a blank node
identifier over some of the other approaches described in [RDF-SYNTAX] is that using a blank node identifier
allows the same blank node to be referred to in more than one place in the same RDF/XML document.

Finally, the typed literals described in Section 2.4 may be used as property values instead of the plain literals
used in the examples so far. A typed literal is represented in RDF/XML by adding an rdf:datatype attribute
specifying a datatype URIref to the property element containing the literal.

For example, to change the statement in Example 2 to use a typed literal instead of a plain literal for the
exterms:creation-date property, the triple representation would be:

ex:index.html exterms:creation-date "1999-08-16"^^xsd:date .

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

21 di 68 05/04/2008 18.46

with corresponding RDF/XML syntax shown in Example 7:

Example 7: RDF/XML Using a Typed Literal
1. <?xml version="1.0"?>
2. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
3. xmlns:exterms="http://www.example.org/terms/">

4. <rdf:Description rdf:about="http://www.example.org/index.html">
5. <exterms:creation-date rdf:datatype=
 "http://www.w3.org/2001/XMLSchema#date">1999-08-16
 </exterms:creation-date>
6. </rdf:Description>

7. </rdf:RDF>

In line 5 of Example 7, a typed literal is given as the value of the exterms:creation-date property element by
adding an rdf:datatype attribute to the element's start-tag to specify the datatype. The value of this attribute is
the URIref of the datatype, in this case, the URIref of the XML Schema date datatype. Since this is an attribute
value, the URIref must be written out, rather than using the QName abbreviation xsd:date used in the triple. A
literal appropriate to this datatype is then written as the element content, in this case, the literal 1999-08-16,
which is the literal representation for August 16, 1999 in the XML Schema date datatype.

In the rest of the Primer,
the examples will use typed literals from appropriate datatypes rather than plain (untyped) literals, in order to
emphasize the value of typed literals in conveying more information about the intended interpretation of literal
values. (The exceptions will be that plain literals will continue to be used in examples taken from actual
applications that do not currently use typed literals, in order to accurately reflect the usage in those
applications.) In RDF/XML, both plain and typed literals (and, with certain exceptions, tags) can contain
Unicode [UNICODE] characters, allowing information from many languages to be directly represented.

Example 7 illustrates that using typed literals requires writing an rdf:datatype attribute with a URIref identifying
the datatype for each element whose value is a typed literal. As noted earlier, RDF/XML requires that URIrefs
used as attribute values must be written out, rather than abbreviated as a QName. XML entities can be used in
RDF/XML to improve readability in such cases, by providing an additional abbreviation facility for URIrefs.
Essentially, an XML entity declaration associates a name with a string of characters. When the entity name is
referenced elsewhere within an XML document, XML processors replace the reference with the corresponding
string. For example, the ENTITY declaration (specified as part of a DOCTYPE declaration at the beginning of the
RDF/XML document):

<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>

defines the entity xsd
to be the string representing the namespace URIref for XML Schema datatypes. This declaration allows the full
namespace URIref to be abbreviated elsewhere in the XML document by the entity reference &xsd;. Using this
abbreviation, Example 7 could also be written as shown in Example 8.

Example 8: RDF/XML Using a Typed Literal and an XML Entity
1. <?xml version="1.0"?>
2. <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>

3. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4. xmlns:exterms="http://www.example.org/terms/">

5. <rdf:Description rdf:about="http://www.example.org/index.html">
6. <exterms:creation-date rdf:datatype="&xsd;date">1999-08-16
 </exterms:creation-date>
7. </rdf:Description>

8. </rdf:RDF>

The DOCTYPE declaration in line 2 defines the entity xsd, which is used in line 6.

The use of XML entities as an abbreviation mechanism is optional in RDF/XML, and hence the use of an XML
DOCTYPE
declaration is also optional in RDF/XML. (For readers familiar with XML, RDF/XML is only required to be
"well-formed" XML. RDF/XML is not designed to be validated against a DTD by a validating XML processor.
This is discussed more fully in Appendix B, which provides additional information about XML.)

For readability purposes, examples in the rest of the Primer will use the XML entity xsd as just described. XML
entities are discussed further in Appendix B. As illustrated in Appendix B, other URIrefs (and, more generally,
other strings) can also be abbreviated using XML entities. However, the URIrefs for XML Schema datatypes
are the only ones that will be abbreviated in this way in Primer examples.

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

22 di 68 05/04/2008 18.46

Although additional abbreviated forms for writing RDF/XML are available, the facilities illustrated so far provide
a simple but general way to express graphs in RDF/XML. Using these facilities, an RDF graph is written in
RDF/XML as follows:

All blank nodes are assigned blank node identifiers.
Each node is listed in turn as the subject of an un-nested rdf:Description element, using an rdf:about
attribute if the node has a URIref, or an rdf:nodeID attribute if the node is blank.
For each triple with this node as subject, an appropriate property element is created, with either literal
content (possibly empty), an rdf:resource attribute specifying the object of the triple (if the object node
has a URIref), or an rdf:nodeID attribute specifying the object of the triple (if the object node is blank).

Compared to some of the more abbreviated approaches described in [RDF-SYNTAX], this simple approach
provides the most direct representation of the actual graph structure, and is particularly recommended for
applications in which the output RDF/XML is to be used in further RDF processing.

3.2 Abbreviating and Organizing RDF URIrefs

So far, the examples have assumed that the resources being described have been given URIrefs already. For
instance, the initial examples provided descriptive information about example.org's Web page, whose URIref
was http://www.example.org/index.html. This resource was identified in RDF/XML using an rdf:about
attribute citing its full URIref. Although RDF does not specify or control how URIrefs are assigned to resources,
sometimes it is desirable to achieve the effect of assigning URIrefs to resources that are part of an organized
group of resources. For example, suppose a sporting goods company, example.com, wanted to provide an
RDF-based catalog of its products, such as tents, hiking boots, and so on, as an RDF/XML document,
identified by (and located at) http://www.example.com/2002/04/products. In that resource, each product might
be given a separate RDF description. This catalog, along with one of these descriptions, the catalog entry for a
model of tent called the "Overnighter", might be written in RDF/XML as shown in Example 9:

Example 9: RDF/XML for example.com's Catalog
1. <?xml version="1.0"?>
2. <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
3. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4. xmlns:exterms="http://www.example.com/terms/">

5. <rdf:Description rdf:ID="item10245">
6. <exterms:model rdf:datatype="&xsd;string">Overnighter</exterms:model>
7. <exterms:sleeps rdf:datatype="&xsd;integer">2</exterms:sleeps>
8. <exterms:weight rdf:datatype="&xsd;decimal">2.4</exterms:weight>
9. <exterms:packedSize rdf:datatype="&xsd;integer">784</exterms:packedSize>
10. </rdf:Description>

 ...other product descriptions...

11. </rdf:RDF>

Example 9
is similar to previous examples in the way it represents the properties (model, sleeping capacity, weight) of the
resource (the tent) being described. (The surrounding xml, DOCTYPE, RDF, and namespace information is
included in lines 1 through 4, and line 11, but this information would only need to be provided once for the
whole catalog, not repeated for each entry in the catalog. Note also that although the datatypes associated with
the various property values are given explicitly, the units associated with some of these property values are
not, even though this information should be available to properly interpret the values. Representing units and
similar information that may be associated with property values is discussed in Section 4.4. In this example, the
value of exterms:sleeps is the number of persons the tent can sleep, the value of exterms:weight is given in
kilograms, and the value of exterms:packedSize is given in square centimeters, the area the tent occupies on a
backpack.)

An important difference from previous examples is that, in line 5, the rdf:Description element has an rdf:ID
attribute instead of an rdf:about attribute. Using rdf:ID specifies a fragment identifier, given by the value of the
rdf:ID attribute (item10245
in this case, which might be the catalog number assigned by example.com), as an abbreviation of the complete
URIref of the resource being described. The fragment identifier item10245 will be interpreted relative to a base
URI, in this case, the URI of the containing catalog document. The full URIref for the tent is formed by taking
the base URI (of the catalog), and appending the character "#" (to indicate that what follows is a fragment
identifier) and then item10245 to it, giving the absolute URIref
http://www.example.com/2002/04/products#item10245.

The rdf:ID attribute is somewhat similar to the ID attribute in XML and HTML, in that it defines a name which
must be unique relative to the current base URI (in this example, that of the catalog). In this case, the rdf:ID
attribute appears to be assigning a name (item10245) to this particular kind of tent. Any other RDF/XML within
this catalog could refer to the tent by using either the absolute URIref

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

23 di 68 05/04/2008 18.46

http://www.example.com/2002/04/products#item10245, or the relative URIref #item10245. The relative URIref
would be understood as being a URIref defined relative to the base URIref of the catalog. Using a similar
abbreviation, the URIref of the tent could also be given by specifying rdf:about="#item10245" in the catalog
entry (i.e., by specifying the relative URIref directly) instead of rdf:ID="item10245" . As an abbreviation
mechanism, the two forms are essentially synonyms: the full URIref formed by RDF/XML is the same in either
case: http://www.example.com/2002/04/products#item10245. However, using rdf:ID provides an additional
check when assigning a set of distinct names, since a given value of the rdf:ID attribute can only appear once
relative to the same base URI (the catalog document, in this example). Using either form, example.com would
be giving the URIref for the tent in a two-stage process, first assigning the URIref for the whole catalog, and
then using a relative URIref in the description of the tent in the catalog to indicate the URIref that has been
assigned to this particular kind of tent. Moreover, this use of a relative URIref can be thought of either as being
an abbreviation for a full URIref that has been assigned to the tent independently of the RDF, or as being the
assignment of the URIref to the tent within the catalog.

RDF located outside
the catalog could refer to this tent by using the full URIref, i.e., by concatenating the relative URIref #item10245
of the tent to the base URI of the catalog, forming the absolute URIref
http://www.example.com/2002/04/products#item10245. For example, an outdoor sports Web site
exampleRatings.com might use RDF to provide ratings of various tents. The (5-star) rating given to the tent
described in Example 9 might then be represented on exampleRatings.com's Web site as shown in Example
10:

Example 10: exampleRatings.com's Rating of the Tent
1. <?xml version="1.0"?>
2. <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
3. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4. xmlns:sportex="http://www.exampleRatings.com/terms/">

5. <rdf:Description rdf:about="http://www.example.com/2002/04/products#item10245">
6. <sportex:ratingBy rdf:datatype="&xsd;string">Richard Roe</sportex:ratingBy>
7. <sportex:numberStars rdf:datatype="&xsd;integer">5</sportex:numberStars>
8. </rdf:Description>
9. </rdf:RDF>

In Example 10, line 5 uses an rdf:Description element with an rdf:about attribute whose value is the full
URIref of the tent. The use of this URIref allows the tent being referred to in the rating to be precisely identified.

These examples illustrate several points. First, even though RDF does not specify or control how URIrefs are
assigned to resources (in this case, the various tents and other items in the catalog), the effect of assigning
URIrefs to resources in RDF can be achieved by combining a process (external to RDF) that identifies a single
document (the catalog in this case) as the source for descriptions of those resources, with the use of relative
URIrefs in descriptions of those resources within that document. For instance, example.com could use this
catalog as the central source where its products are described, with the understanding that if a product's item
number is not in an entry in this catalog, it is not a product known to example.com. (Note that RDF does not
assume any particular relationship exists between two resources just because their URIrefs have the same
base, or are otherwise similar. This relationship may be known to example.com, but it is not directly defined by
RDF.)

These examples also illustrate one of the basic architectural principles of the Web, which is that anyone should
be able to freely add information about an existing resource, using any vocabulary they please
[BERNERS-LEE98]. The examples further illustrate that the RDF describing a particular resource does not
need to be located all in one place; instead, it may be distributed throughout the Web. This is true not only for
situations like this one, in which one organization is rating or commenting on a resource defined by another,
but also for situations in which the original definer of a resource (or anyone else) wishes to amplify the
description of that resource by providing additional information about it. This may be done by modifying the
RDF document in which the resource was originally described, to add the properties and values needed to
describe the additional information. Or, as this example illustrates, a separate document could be created,
providing the additional properties and values in rdf:Description elements that refer to the original resource
via its URIref using rdf:about.

The discussion above indicated that relative URIrefs such as #item10245 will be interpreted relative to a base
URI. By default, this base URI would be the URI of the resource in which the relative URIref is used. However,
in some cases it is desirable to be able to explicitly specify this base URI. For instance, suppose that in
addition to the catalog located at http://www.example.com/2002/04/products, example.org wanted to provide a
duplicate catalog on a mirror site, say at http://mirror.example.com/2002/04/products. This could create a
problem, since if the catalog was accessed from the mirror site, the URIref for the example tent would be
generated from the URI of the containing document, forming
http://mirror.example.com/2002/04/products#item10245, rather than
http://www.example.com/2002/04/products#item10245, and hence would apparently refer to a different
resource than the one intended. Alternatively, example.org might want to assign a base URIref for its set of

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

24 di 68 05/04/2008 18.46

product URIrefs without publishing a single source document whose location defines the base.

To deal with such cases, RDF/XML supports XML Base [XML-BASE], which allows an XML document to
specify a base URI other than the URI of the document itself. Example 11 shows how the catalog would be
described using XML Base:

Example 11: Using XML Base in example.com's Catalog
1. <?xml version="1.0"?>
2. <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
3. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4. xmlns:exterms="http://www.example.com/terms/"
5. xml:base="http://www.example.com/2002/04/products">

6. <rdf:Description rdf:ID="item10245">
7. <exterms:model rdf:datatype="&xsd;string">Overnighter</exterms:model>
8. <exterms:sleeps rdf:datatype="&xsd;integer">2</exterms:sleeps>
9. <exterms:weight rdf:datatype="&xsd;decimal">2.4</exterms:weight>
10. <exterms:packedSize rdf:datatype="&xsd;integer">784</exterms:packedSize>
11. </rdf:Description>

 ...other product descriptions...

12. </rdf:RDF>

In Example 11, the xml:base declaration in line 5 specifies that the base URI for the content within the rdf:RDF
element (until another xml:base attribute is specified) is http://www.example.com/2002/04/products, and all
relative URIrefs cited within that content will be interpreted relative to that base, no matter what the URI of the
containing document is. As a result, the relative URIref of the tent, #item10245, will be interpreted as the same
absolute URIref, http://www.example.com/2002/04/products#item10245, no matter what the actual URI of the
catalog document is, or whether the base URIref actually identifies a particular document at all.

So far, the examples have used a single product description, a particular model of tent, from example.com's
catalog. However, example.com will probably offer several different models of tents, as well as multiple
instances of other categories of products, such as backpacks, hiking boots, and so on. This idea of things
being classified into different kinds or categories is similar to the programming language concept of objects
having different types or classes. RDF supports this concept by providing a predefined property, rdf:type.
When an RDF resource is described with an rdf:type property, the value of that property is considered to be a
resource that represents a category or class of things, and the subject of that property is considered to be an
instance of that category or class. Using rdf:type, Example 12 shows how example.com might indicate that
the product description is that of a tent:

Example 12: Describing a Tent with rdf:type
1. <?xml version="1.0"?>
2. <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
3. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4. xmlns:exterms="http://www.example.com/terms/"
5. xml:base="http://www.example.com/2002/04/products">

6. <rdf:Description rdf:ID="item10245">
7. <rdf:type rdf:resource="http://www.example.com/terms/Tent"/>
8. <exterms:model rdf:datatype="&xsd;string">Overnighter</exterms:model>
9. <exterms:sleeps rdf:datatype="&xsd;integer">2</exterms:sleeps>
10. <exterms:weight rdf:datatype="&xsd;decimal">2.4</exterms:weight>
11. <exterms:packedSize rdf:datatype="&xsd;integer">784</exterms:packedSize>
12. </rdf:Description>

 ...other product descriptions...

13. </rdf:RDF>

In Example 12, the rdf:type
property in line 7 indicates that the resource being described is an instance of the class identified by the URIref
http://www.example.com/terms/Tent. This assumes that example.com has described its classes as part of the
same vocabulary that it uses to describe its other terms (such as the property exterms:weight), so the absolute
URIref of the class is used to refer to it. If example.com had described these classes as part of the product
catalog itself, the relative URIref #Tent could have been used to refer to it.

RDF itself does not provide facilities for defining application-specific classes of things, such as Tent in this
example, or their properties, such as exterms:weight. Instead, such classes would be described in an RDF
schema, using the RDF Schema language discussed in Section 5. Other such facilities for describing classes
can also be defined, such as the DAML+OIL and OWL languages described in Section 5.5.

It is fairly common in RDF for resources to have rdf:type properties that describe the resources as instances
of specific types or classes. Such resources are called typed nodes in the graph, or typed node elements in the
RDF/XML. RDF/XML provides a special abbreviation for describing these typed nodes. In this abbreviation, the
rdf:type property and its value are removed, and the rdf:Description element for the node is replaced by an

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

25 di 68 05/04/2008 18.46

element whose name is the QName corresponding to the value of the removed rdf:type property (a URIref
that names a class). Using this abbreviation, example.com's tent from Example 12 could also be described as
shown in Example 13:

Example 13: Abbreviating the Tent's Type
1. <?xml version="1.0"?>
2. <!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
3. <rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
4. xmlns:exterms="http://www.example.com/terms/"
5. xml:base="http://www.example.com/2002/04/products">

6. <exterms:Tent rdf:ID="item10245">
7. <exterms:model rdf:datatype="&xsd;string">Overnighter</exterms:model>
8. <exterms:sleeps rdf:datatype="&xsd;integer">2</exterms:sleeps>
9. <exterms:weight rdf:datatype="&xsd;decimal">2.4</exterms:weight>
10. <exterms:packedSize rdf:datatype="&xsd;integer">784</exterms:packedSize>
11. </exterms:Tent>

 ...other product descriptions...

12. </rdf:RDF>

Since a resource may be described as an instance of more than one class, a resource may have more than
one rdf:type property. However, only one of these rdf:type properties can be abbreviated in this way. The
others must be written out using rdf:type properties, in the manner illustrated by the rdf:type property in
Example 12.

In addition to its use in describing instances of user-defined classes such as exterms:Tent, the typed node
abbreviation is also commonly used in RDF/XML when describing instances of the built-in RDF classes (such
as rdf:Bag) to be described in Section 4, and the built-in RDF Schema classes (such as rdfs:Class) to be
described in Section 5.

Both Example 12 and Example 13
illustrate that RDF statements can be written in RDF/XML in a way that closely resembles descriptions that
might have been written directly in (non-RDF) XML. This is an important consideration, given the increasing
use of XML in all kinds of applications, since it suggests that RDF could be used in these applications without
requiring major changes in the way their information is structured.

3.3 RDF/XML Summary

The examples above have illustrated some of the basic ideas behind the RDF/XML syntax. These examples
provide enough information to begin writing useful RDF/XML. A more thorough discussion of the principles
behind the modeling of RDF statements in XML (known as striping), together with a presentation of the other
RDF/XML abbreviations available, and other details and examples about writing RDF in XML, is given in the
(normative) RDF/XML Syntax Specification [RDF-SYNTAX].

4. Other RDF Capabilities

RDF provides a number of additional capabilities, such as built-in types and properties for representing groups
of resources and RDF statements, and capabilities for representing XML fragments as property values. These
additional capabilities are described in the following sections.

4.1 RDF Containers

There is often a need to describe groups of things: for example, to say that a book was created by several
authors, or to list the students in a course, or the software modules in a package. RDF provides several
predefined (built-in) types and properties that can be used to describe such groups.

First, RDF provides a container vocabulary
consisting of three predefined types (together with some associated predefined properties). A container is a
resource that contains things. The contained things are called members. The members of a container may be
resources (including blank nodes) or literals. RDF defines three types of containers:

rdf:Bag
rdf:Seq
rdf:Alt

A Bag (a resource having type rdf:Bag) represents a group of resources or literals, possibly including duplicate
members, where there is no significance in the order of the members. For example, a Bag might be used to
describe a group of part numbers in which the order of entry or processing of the part numbers does not
matter.

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

26 di 68 05/04/2008 18.46

A Sequence or Seq (a resource having type rdf:Seq) represents a group of resources or literals, possibly
including duplicate members, where the order of the members is significant. For example, a Sequence might
be used to describe a group that must be maintained in alphabetical order.

An Alternative or Alt (a resource having type rdf:Alt) represents a group of resources or literals that are
alternatives
(typically for a single value of a property). For example, an Alt might be used to describe alternative language
translations for the title of a book, or to describe a list of alternative Internet sites at which a resource might be
found. An application using a property whose value is an Alt container should be aware that it can choose any
one of the members of the group as appropriate.

To describe a resource as being one of these types of containers, the resource is given an rdf:type property
whose value is one of the predefined resources rdf:Bag, rdf:Seq, or rdf:Alt (whichever is appropriate). The
container resource (which may either be a blank node or a resource with a URIref) denotes the group as a
whole. The members of the container can be described by defining a container membership property for each
member with the container resource as its subject and the member as its object. These container membership
properties have names of the form rdf:_n, where n is a decimal integer greater than zero, with no leading
zeros, e.g., rdf:_1, rdf:_2, rdf:_3, and so on, and are used specifically for describing the members of
containers. Container resources may also have other properties that describe the container, in addition to the
container membership properties and the rdf:type property.

It is important to understand that while these types of containers are described using predefined RDF types
and properties, any special meanings associated with these containers, e.g., that the members of an Alt
container are alternative values, are only intended meanings. These specific container types, and their
definitions, are provided with the aim of establishing a shared convention among those who need to describe
groups of things. All RDF does is provide the types and properties that can be used to construct the RDF
graphs to describe each type of container. RDF has no more built-in understanding of what a resource of type
rdf:Bag is than it has of what a resource of type ex:Tent (discussed in Section 3.2) is. In each case,
applications must be written to behave according to the particular meaning involved for each type. This point
will be expanded on in the following examples.

A typical use of a container is to indicate that the value of a property is a group of things. For example, to
represent the sentence "Course 6.001 has the students Amy, Mohamed, Johann, Maria, and Phuong", the
course could be described by giving it a s:students property (from an appropriate vocabulary) whose value is a
container of type rdf:Bag (representing
the group of students). Then, using the container membership properties, individual students could be
identified as being members of that group, as in the RDF graph shown in Figure 14:

Figure 14: A Simple Bag Container Description

Since the value of the s:students
property in this example is described as a Bag, there is no intended significance in the order given for the
URIrefs of the students, even though the membership properties in the graph have integers in their names. It is
up to applications creating and processing graphs that include rdf:Bag containers to ignore any (apparent)
order in the names of the membership properties.

RDF/XML provides some special syntax and abbreviations to make it simpler to describe such containers. For

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

27 di 68 05/04/2008 18.46

example, Example 14 describes the graph shown in Figure 14:

Example 14: RDF/XML for a Bag of Students
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://example.org/students/vocab#">

 <rdf:Description rdf:about="http://example.org/courses/6.001">
 <s:students>
 <rdf:Bag>
 <rdf:li rdf:resource="http://example.org/students/Amy"/>
 <rdf:li rdf:resource="http://example.org/students/Mohamed"/>
 <rdf:li rdf:resource="http://example.org/students/Johann"/>
 <rdf:li rdf:resource="http://example.org/students/Maria"/>
 <rdf:li rdf:resource="http://example.org/students/Phuong"/>
 </rdf:Bag>
 </s:students>
 </rdf:Description>
</rdf:RDF>

Example 14 shows that RDF/XML provides rdf:li as a convenience element to avoid having to explicitly
number each membership property. The numbered properties rdf:_1, rdf:_2, and so on are generated from
the rdf:li elements in forming the corresponding graph. The element name rdf:li was chosen to be
mnemonic with the term "list item" from HTML. Note also the use of a <rdf:Bag> element nested within the
<s:students> property element. The <rdf:Bag> element is another example of the abbreviation used in
Example 13 that replaces both an rdf:Description element and an rdf:type element with a single element
when describing an instance of a type (an instance of rdf:Bag in this case). Since no URIref is specified, the
Bag is a blank node. Its nesting within the <s:students> property element is an abbreviated way of indicating
that the blank node is the value of this property. These abbreviations are described further in [RDF-SYNTAX].

The graph structure for an rdf:Seq container, and the corresponding RDF/XML, are similar to those for an
rdf:Bag (the only difference is in the type, rdf:Seq). Once again, although an rdf:Seq container is intended to
describe a sequence, it is up to applications creating and processing the graph to appropriately interpret the
sequence of integer-valued property names.

To illustrate an Alt container, the sentence "The source code for X11 may be found at ftp.example.org,
ftp1.example.org, or ftp2.example.org" could be expressed in the RDF graph shown in Figure 15:

Figure 15: A Simple Alt Container Description

Example 15 shows how the graph in Figure 15 could be written in RDF/XML:

Example 15: RDF/XML for an Alt Container
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://example.org/packages/vocab#">

 <rdf:Description rdf:about="http://example.org/packages/X11">
 <s:DistributionSite>
 <rdf:Alt>
 <rdf:li rdf:resource="ftp://ftp.example.org"/>
 <rdf:li rdf:resource="ftp://ftp1.example.org"/>
 <rdf:li rdf:resource="ftp://ftp2.example.org"/>
 </rdf:Alt>
 </s:DistributionSite>
 </rdf:Description>
</rdf:RDF>

An Alt container is intended to have at least one member, identified by the property rdf:_1. This member is

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

28 di 68 05/04/2008 18.46

intended to be considered as the default or preferred value. Other than the member identified as rdf:_1, the
order of the remaining elements is not significant.

The RDF in Figure 15 as written states simply that the value of the s:DistributionSite site property is the Alt
container resource itself. Any additional meaning that is to be read into this graph, e.g., that one of the
members of the Alt container is to be considered as the value of the s:DistributionSite site property, or that
ftp://ftp.example.org is the default or preferred value, must be built into an application's understanding of the
intended meaning of an Alt container, and/or into the meaning defined for the particular property
(s:DistributionSite in this case), which also must be understood by the application.

Alt containers are frequently used in conjunction with language tagging. (RDF/XML permits the use of the
xml:lang attribute defined in [XML] to indicate that the element content is in a specified language. The use of
xml:lang is described in [RDF-SYNTAX], and illustrated later in Section 6.2.) For example, a work whose title
has been translated into several languages might have its title property pointing to an Alt container holding
literals representing the titles expressed in each of the language variants.

The distinction between the intended meanings of a Bag and an Alt can be further illustrated by considering the
authorship of the book "Huckleberry Finn". The book has exactly one author, but the author has two names
(Mark Twain and Samuel Clemens). Either name is sufficient to specify the author. Thus using an Alt container
for the author's names more accurately represents the relationship than using a Bag (which might suggest
there are two different authors).

Users are free to choose their own ways to describe groups of resources, rather than using the RDF container
vocabulary. These RDF containers are merely provided as common definitions that, if generally used, could
help make data involving groups of resources more interoperable.

Sometimes there are clear alternatives to using these RDF container types. For example, a relationship
between a particular resource and a group of other resources could be indicated by making the first resource
the subject of multiple statements using the same property. This is structurally different from the resource being
the subject of a single statement whose object is a container containing multiple members. In some cases,
these two structures may have equivalent meaning, but in other cases they may not. The choice of which to
use in a given situation should be made with this in mind.

Consider as an example the relationship between a writer and her publications, as in the sentence:

Sue has written "Anthology of Time", "Zoological Reasoning", and "Gravitational Reflections".

In this case, there are three resources each of which was written independently by the same writer. This could
be expressed using repeated properties as:

exstaff:Sue exterms:publication ex:AnthologyOfTime .
exstaff:Sue exterms:publication ex:ZoologicalReasoning .
exstaff:Sue exterms:publication ex:GravitationalReflections .

In this example there is no stated relationship between the publications other than that they were written by the
same person. Each of the statements is an independent fact, and so using repeated properties would be a
reasonable choice. However, this could just as reasonably be represented as a statement about the group of
resources written by Sue:

exstaff:Sue exterms:publication _:z .
_:z rdf:type rdf:Bag .
_:z rdf:_1 ex:AnthologyOfTime .
_:z rdf:_2 ex:ZoologicalReasoning .
_:z rdf:_3 ex:GravitationalReflections .

On the other hand, the sentence:

The resolution was approved by the Rules Committee, having members Fred, Wilma, and Dino.

says that the committee as a whole
approved the resolution; it does not necessarily state that each committee member individually voted in favor of
the resolution. In this case, it would be potentially misleading to model this sentence as three separate
exterms:approvedBy statements, one for each committee member, as shown below:

ex:resolution exterms:approvedBy ex:Fred .
ex:resolution exterms:approvedBy ex:Wilma .
ex:resolution exterms:approvedBy ex:Dino .

since these statements say that each member individually approved the resolution.

In this case, it would be better to model the sentence as a single exterms:approvedBy statement whose subject

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

29 di 68 05/04/2008 18.46

is the resolution and whose object is the committee itself. The committee resource could then be described as
a Bag whose members are the members of the committee, as in the following triples:

ex:resolution exterms:approvedBy ex:rulesCommittee .
ex:rulesCommittee rdf:type rdf:Bag .
ex:rulesCommittee rdf:_1 ex:Fred .
ex:rulesCommittee rdf:_2 ex:Wilma .
ex:rulesCommittee rdf:_3 ex:Dino .

When using RDF containers, it is important to understand that the statements are not constructing containers,
as in a programming language data structure. Instead, the statements are describing containers (groups of
things) that presumably exist. For instance, in the Rules Committee example just given, the Rules Committee
is an unordered group of people, whether it is described in RDF that way or not. Saying that the resource
ex:rulesCommittee has type rdf:Bag
is not saying that the Rules Committee is a data structure, or constructing a particular data structure to hold the
members of the group (the Rules Committee could be described as a Bag without describing any members at
all). Instead, it is describing the Rules Committee as having characteristics corresponding to those associated
with a Bag container, namely that it has members, and their order of description is not significant. Similarly,
using the container membership properties simply describes a container resource as having certain things as
members. This does not necessarily say that the things described as members are the only members that
exist. For example, the triples given above to describe the Rules Committee say only that Fred, Wilma, and
Dino are members of the committee, not that they are the only members of the committee.

Also, Example 14 and Example 15
illustrated a common "pattern" in describing containers, regardless of the type of container involved (e.g., use
of a blank node with an appropriate rdf:type property to represent the container itself, and use of rdf:li to
generate sequentially-numbered container membership properties). However, it is important to understand that
RDF does not enforce
this particular way of using the RDF container vocabulary, and so it is possible to use this vocabulary in other
ways. For example, in some cases it might be appropriate to use a container resource having a URIref rather
than using a blank node. Moreover,
it is possible to use the container vocabulary in ways that may not describe graphs with the "well-formed"
structures shown in the previous examples. For example, Example 16 shows the RDF/XML for a graph similar
to the Alt container shown in Figure 15, but which writes the container membership properties explicitly, rather
than using rdf:li to generate them:

Example 16: RDF/XML for an "Ill-Formed" Alt Container
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://example.org/packages/vocab#">

 <rdf:Description rdf:about="http://example.org/packages/X11">
 <s:DistributionSite>
 <rdf:Alt>
 <rdf:type rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#Bag"/>
 <rdf:_2 rdf:resource="ftp://ftp.example.org"/>
 <rdf:_2 rdf:resource="ftp://ftp1.example.org"/>
 <rdf:_5 rdf:resource="ftp://ftp2.example.org"/>
 </rdf:Alt>
 </s:DistributionSite>
 </rdf:Description>
</rdf:RDF>

As noted in [RDF-SEMANTICS], RDF imposes no "well-formedness" conditions on the use of the container
vocabulary, so Example 16 is perfectly legal, even though the container is described as both a Bag and an Alt,
it is described as having two distinct values of the rdf:_2 property, and it does not have rdf:_1, rdf:_3, or
rdf:_4 properties.

As a result, RDF applications that require containers to be "well-formed" should be written to check that the
container vocabulary is being used appropriately, in order to be fully robust.

4.2 RDF Collections

A limitation of the containers described in Section 4.1 is that there is no way to close them, i.e., to say "these
are all the members of the container". As noted in Section 4.1, a container only says that certain identified
resources are members; it does not say that other members do not exist. Also, while one graph may describe
some of the members, there is no way to exclude the possibility that there is another graph somewhere that
describes additional members. RDF provides support for describing groups containing only the specified
members, in the form of RDF collections. An RDF collection is a group of things represented as a list structure
in the RDF graph. This list structure is constructed using a predefined collection vocabulary consisting of the
predefined type rdf:List, the predefined properties rdf:first and rdf:rest, and the predefined resource
rdf:nil.

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

30 di 68 05/04/2008 18.46

To illustrate this, the sentence "The students in course 6.001 are Amy, Mohamed, and Johann" could be
represented using the graph shown in Figure 16:

Figure 16: An RDF Collection (list structure)

In this graph, each member of the collection, such as s:Amy, is the object of an rdf:first property whose
subject is a resource (a blank node in this example) that represents a list. This list resource is linked to the rest
of the list by an rdf:rest property. The end of the list is indicated by the rdf:rest property having as its object
the resource rdf:nil (the resource rdf:nil represents the empty list, and is defined as being of type
rdf:List). This structure will be familiar to those who know the Lisp programming language. As in Lisp, the
rdf:first and rdf:rest
properties allow applications to traverse the structure. Each of the blank nodes forming this list structure is
implicitly of type rdf:List (that is, each of these nodes implicitly has an rdf:type property whose value is the
predefined type rdf:List), although this is not explicitly shown in the graph. The RDF Schema language
[RDF-VOCABULARY] defines the properties rdf:first and rdf:rest as having subjects of type rdf:List, so
the information about these nodes being lists can generally be inferred, rather than the corresponding rdf:type
triples being written out all the time.

RDF/XML provides a special notation to make it easy to describe collections using graphs of this form. In
RDF/XML, a collection can be described by a property element that has the attribute
rdf:parseType="Collection", and that contains a group of nested elements representing the members of the
collection. RDF/XML provides the rdf:parseType attribute to indicate that the contents of an element are to be
interpreted in a special way. In this case, the rdf:parseType="Collection" attribute indicates that the enclosed
elements are to be used to create the corresponding list structure in the RDF graph (other values of the
rdf:parseType attribute will be described in later sections of the Primer).

To illustrate how rdf:parseType="Collection" works, the RDF/XML from Example 17 would result in the RDF
graph shown in Figure 16:

Example 17: RDF/XML for a Collection of Students
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://example.org/students/vocab#">

 <rdf:Description rdf:about="http://example.org/courses/6.001">
 <s:students rdf:parseType="Collection">
 <rdf:Description rdf:about="http://example.org/students/Amy"/>
 <rdf:Description rdf:about="http://example.org/students/Mohamed"/>
 <rdf:Description rdf:about="http://example.org/students/Johann"/>
 </s:students>
 </rdf:Description>
</rdf:RDF>

The use of rdf:parseType="Collection" in RDF/XML always defines a list structure like the one shown in
Figure 16, i.e., a fixed finite list of items with a given length and terminated by rdf:nil, and which uses "new"
blank nodes that are unique to the list structure itself. However, RDF does not enforce this particular way of
using the RDF collection vocabulary, and so it is possible to use this vocabulary in other ways, some of which
may not describe lists or closed collections. To see why, note that the graph shown in Figure 16 could also be
written in RDF/XML by writing out the same triples "in longhand" (without using rdf:parseType="Collection")

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

31 di 68 05/04/2008 18.46

using the collection vocabulary, as in Example 18:

Example 18: RDF/XML for a Collection of Students in "Longhand"
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:s="http://example.org/students/vocab#">

<rdf:Description rdf:about="http://example.org/courses/6.001">
 <s:students rdf:nodeID="sch1"/>
</rdf:Description>

<rdf:Description rdf:nodeID="sch1">
 <rdf:first rdf:resource="http://example.org/students/Amy"/>
 <rdf:rest rdf:nodeID="sch2"/>
</rdf:Description>

<rdf:Description rdf:nodeID="sch2">
 <rdf:first rdf:resource="http://example.org/students/Mohamed"/>
 <rdf:rest rdf:nodeID="sch3"/>
</rdf:Description>

<rdf:Description rdf:nodeID="sch3">
 <rdf:first rdf:resource="http://example.org/students/Johann"/>
 <rdf:rest rdf:resource="http://www.w3.org/1999/02/22-rdf-syntax-ns#nil"/>
</rdf:Description>
</rdf:RDF>

As noted in [RDF-SEMANTICS] (and as was the case for the container vocabulary described in Section 4.1),
RDF imposes
no "well-formedness" conditions on the use of the collection vocabulary so, when writing triples in longhand, it
is possible to define RDF graphs with structures other than the well-structured graphs that would be
automatically generated by using rdf:parseType="Collection". For example, it is not illegal to assert that a
given node has two distinct values of the rdf:first property, to create structures that have forked or non-list
tails, or to simply omit part of the description of a collection. Also, graphs defined by using the collection
vocabulary in longhand could use URIrefs to identify the components of the list instead of blank nodes unique
to the list structure. In this case, it would be possible to create triples in other graphs that effectively added
elements to the collection, making it non-closed.

As a result, RDF applications that require collections to be well-formed should be written to check that the
collection vocabulary is being used appropriately, in order to be fully robust. In addition, languages such as
OWL [OWL], which can define additional constraints on the structure of RDF graphs, can rule out some of
these cases.

4.3 RDF Reification

RDF applications sometimes need to describe other RDF statements using RDF, for instance, to record
information about when statements were made, who made them, or other similar information (this is sometimes
referred to as "provenance" information). For example, Example 9 in Section 3.2 described a particular tent
with URIref exproducts:item10245, offered for sale by example.com. One of the triples from that description,
describing the weight of the tent, was:

exproducts:item10245 exterms:weight "2.4"^^xsd:decimal .

and it might be useful for example.com to record who provided that particular piece of information.

RDF provides a built-in vocabulary intended for describing RDF statements. A description of a statement using
this vocabulary is called a reification of the statement. The RDF reification vocabulary consists of the type
rdf:Statement, and the properties rdf:subject, rdf:predicate, and rdf:object. However, while RDF provides
this reification vocabulary, care is needed in using it, because it is easy to imagine that the vocabulary defines
some things that are not actually defined. This point will be discussed further later in this section.

Using the reification vocabulary, a reification of the statement about the tent's weight would be given by
assigning the statement a URIref such as exproducts:triple12345 (so statements can be written describing it),
and then describing the statement using the statements:

exproducts:triple12345 rdf:type rdf:Statement .
exproducts:triple12345 rdf:subject exproducts:item10245 .
exproducts:triple12345 rdf:predicate exterms:weight .
exproducts:triple12345 rdf:object "2.4"^^xsd:decimal .

These statements say that the resource identified by the URIref exproducts:triple12345 is an RDF statement,
that the subject of the statement refers to the resource identified by exproducts:item10245, the predicate of the
statement refers to the resource identified by exterms:weight, and the object of the statement refers to the
decimal value identified by the typed literal "2.4"^^xsd:decimal. Assuming that the original statement is

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

32 di 68 05/04/2008 18.46

actually identified by exproducts:triple12345, it should be clear by comparing the original statement with the
reification that the reification actually does describe it. The conventional use of the RDF reification vocabulary
always involves describing a statement using four statements in this pattern; the four statements are
sometimes referred to as a "reification quad" for this reason.

Using reification according to this convention, example.com could record the fact that John Smith made the
original statement about the tent's weight by first assigning the original statement a URIref (such as
exproducts:triple12345
as before), describing that statement using the reification just described, and then adding an additional
statement that exproducts:triple12345
was written by John Smith (using a URIref to identify which John Smith is being referred to). The resulting
statements would be:

exproducts:triple12345 rdf:type rdf:Statement .
exproducts:triple12345 rdf:subject exproducts:item10245 .
exproducts:triple12345 rdf:predicate exterms:weight .
exproducts:triple12345 rdf:object "2.4"^^xsd:decimal .
exproducts:triple12345 dc:creator exstaff:85740 .

The original statement, together with the reification and the attribution of the statement to John Smith, forms
the graph shown in Figure 17:

Figure 17: A Statement, Its Reification, and Its Attribution

This graph could be written in RDF/XML as shown in Example 19:

Example 19: RDF/XML for the Reification Example
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:exterms="http://www.example.com/terms/"
 xml:base="http://www.example.com/2002/04/products">

 <rdf:Description rdf:ID="item10245">
 <exterms:weight rdf:datatype="&xsd;decimal">2.4</exterms:weight>
 </rdf:Description>

 <rdf:Statement rdf:about="#triple12345">
 <rdf:subject rdf:resource="http://www.example.com/2002/04/products#item10245"/>
 <rdf:predicate rdf:resource="http://www.example.com/terms/weight"/>
 <rdf:object rdf:datatype="&xsd;decimal">2.4</rdf:object>

 <dc:creator rdf:resource="http://www.example.com/staffid/85740"/>
 </rdf:Statement>

</rdf:RDF>

Section 3.2 introduced the use of the rdf:ID attribute in RDF/XML in an rdf:Description element to abbreviate
the URIref of the subject of a statement. rdf:ID

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

33 di 68 05/04/2008 18.46

can also be used in a property element to automatically produce a reification of the triple that the property
element generates. Example 20 shows how this could be used to produce the same graph as Example 19:

Example 20: Generating Reifications using rdf:ID
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:exterms="http://www.example.com/terms/"
 xml:base="http://www.example.com/2002/04/products">

 <rdf:Description rdf:ID="item10245">
 <exterms:weight rdf:ID="triple12345" rdf:datatype="&xsd;decimal">2.4
 </exterms:weight>
 </rdf:Description>

 <rdf:Description rdf:about="#triple12345">
 <dc:creator rdf:resource="http://www.example.com/staffid/85740"/>
 </rdf:Description>

</rdf:RDF>

In this case, specifying the attribute rdf:ID="triple12345" in the exterms:weight element results in the original
triple describing the tent's weight:

exproducts:item10245 exterms:weight "2.4"^^xsd:decimal .

plus the reification triples:

exproducts:triple12345 rdf:type rdf:Statement .
exproducts:triple12345 rdf:subject exproducts:item10245 .
exproducts:triple12345 rdf:predicate exterms:weight .
exproducts:triple12345 rdf:object "2.4"^^xsd:decimal .

The subject of these reification triples is a URIref formed by concatenating the base URI of the document
(given in the xml:base declaration), the character "#" (to indicate that what follows is a fragment identifier), and
the value of the rdf:ID attribute; that is, the triples have the same subject exproducts:triple12345 as in the
previous examples.

Note that asserting the reification is not the same as asserting the original statement, and neither implies the
other. That is, when someone says that John said something about the weight of a tent, they are not making a
statement about the weight of a tent themselves, they are making a statement about something John said.
Conversely, when someone describes the weight of a tent, they are not also making a statement about a
statement they made (since they may have no intention of talking about things called "statements").

The text above deliberately referred in a number of places to "the conventional use of reification". As noted
earlier, care is needed when using the RDF reification vocabulary because it is easy to imagine that the
vocabulary defines some things that are not actually defined. While there are applications that successfully use
reification, they do so by following some conventions, and making some assumptions, that are in addition to
the actual meaning that RDF defines for the reification vocabulary, and the actual facilities that RDF provides to
support it.

For one thing, it is important to note that in the conventional use of reification, the subject of the reification
triples is assumed to identify a particular instance of a triple in a particular RDF document, rather than some
arbitrary triple having the same subject, predicate, and object. This particular convention is used because
reification is intended for expressing properties such as dates of composition and source information, as in the
examples given already, and these properties need to be applied to specific instances of triples. There could
be several triples that have the same subject, predicate, and object and, although a graph is defined as a set of
triples, several instances with the same triple structure might occur in different documents. Thus, to fully
support this convention, there needs to be some means of associating the subject of the reification triples with
an individual triple in some document. However, RDF provides no way to do this.

For instance, in the examples above, there is no explicit information in either the triples or the RDF/XML that
actually indicates that the original statement describing the tent's weight is the resource
exproducts:triple12345, the resource that is the subject of the four reification statements and the statement
that John Smith created it. This can be seen by looking at the drawn graph shown in Figure 17. The original
statement is certainly part of this graph, but as far as the information in the graph is concerned,
exproducts:triple12345
is a separate resource, rather than identifying that part of the graph. RDF does not provide a built-in way of
indicating how a URIref like exproducts:triple12345 is associated with a particular statement or graph, any
more than it provides a built-in way of indicating how a URIref like exproducts:item10245 is associated with an
actual tent. Associating specific URIrefs with specific resources (statements in this case) must be done using
mechanisms outside of RDF.

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

34 di 68 05/04/2008 18.46

Using rdf:ID as shown in Example 20
generates the reification automatically, and provides a convenient way of indicating the URIref to be used as
the subject of the statements in the reification. Moreover, it provides a partial "hook" relating the triples in the
reification with the piece of RDF/XML syntax that caused them to be created, since the value triple12345 of
the rdf:ID
attribute is used to generate the URIref of the subject of the reification triples. However, this relationship is
once again outside RDF, since there is nothing in the resulting triples that explicitly says that the original triple
had the URIref exproducts:triple12345
(RDF does not assume there is any relationship between a URIref and any RDF/XML that it might have been
used or abbreviated in).

The lack of a built-in means for assigning URIrefs to statements does not mean that "provenance" information
of this kind cannot be expressed in RDF, just that it cannot be done using only the meaning RDF associates
with the reification vocabulary. For example, if an RDF document (say, a Web page) has a URI, statements
could be made about the resource identified by that URI and, based on some application-dependent
understanding of how those statements should be interpreted, an application could act as if those statements
"distribute" over (apply equally to) all the statements in the document. Also, if some mechanism exists (outside
of RDF) to assign URIs to individual RDF statements, then statements could certainly be made about those
individual statements, using their URIs to identify them. However, in these cases, it would also not be strictly
necessary to use the reification vocabulary in the conventional way.

To see this, assuming the original statement:

exproducts:item10245 exterms:weight "2.4"^^xsd:decimal .

had a URIref of exproducts:triple12345, the statement could be attributed to John Smith simply by the
statement:

exproducts:triple12345 dc:creator exstaff:85740 .

with no use of the reification vocabulary (although the description of exproducts:triple12345 as having
rdf:type rdf:Statement might also be helpful).

In addition, the reification vocabulary could be used directly according to the convention described above,
along with an application-dependent understanding as to how to associate specific triples with their reifications.
However, other applications receiving this RDF would not necessarily share this application-dependent
understanding, and thus would not necessarily interpret the graphs appropriately.

It is also important to note that the interpretation of reification described here is not the same as "quotation", as
found in some languages. Instead, the reification describes the relationship between a particular instance of a
triple and the resources the triple refers to. The reification can be read intuitively as saying "this RDF triple talks
about these things", rather than (as in quotation) "this RDF triple has this form." For instance, in the reification
example used in this section, the triple:

exproducts:triple12345 rdf:subject exproducts:item10245 .

describing the rdf:subject
of the original statement says that the subject of the statement is the resource (the tent) identified by the URIref
exproducts:item10245. It does not
say that the subject of the statement is the URIref itself (i.e., a string beginning with certain characters), as
quotation would do.

4.4 More on Structured Values: rdf:value

Section 2.3 noted that the RDF model intrinsically supports only binary relations; that is, a statement specifies
a relation between two resources. For example, the statement:

exstaff:85740 exterms:manager exstaff:62345 .

states that the relation exterms:manager holds between two employees (presumably one manages the other).

However, in some cases it is necessary to represent information involving higher arity relations (relations
between more than two resources) in RDF. Section 2.3 discussed one example of this, where the problem was
to represent the relationship between John Smith and his address information, and the value of John's address
was a structured value of his street, city, state, and postal code. Writing this as a relation shows that this
address is a 5-ary relation of the form:

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

35 di 68 05/04/2008 18.46

address(exstaff:85740, "1501 Grant Avenue", "Bedford", "Massachusetts", "01730")

Section 2.3
noted that this kind of structured information can be represented in RDF by considering the aggregate thing be
described (here, the group of components representing John's address) as a separate resource, and then
making separate statements about that new resource, as in the triples:

exstaff:85740 exterms:address _:johnaddress .
_:johnaddress exterms:street "1501 Grant Avenue" .
_:johnaddress exterms:city "Bedford" .
_:johnaddress exterms:state "Massachusetts" .
_:johnaddress exterms:postalCode "01730" .

(where _:johnaddress is the blank node identifier of the blank node representing John's address.)

This is a general way to represent any n-ary relation in RDF: select one of the participants (John in this case)
to serve as the subject of the original relation (address in this case), then specify an intermediate resource to
represent the rest of the relation (either with or without assigning it a URI), then give that new resource
properties representing the remaining components of the relation.

In the case of John's address, none of the individual parts of the structured value could be considered the
"main" value of the exterms:address
property; all of the parts contribute equally to the value. However, in some cases one of the parts of the
structured value is often thought of as the "main" value, with the other parts of the relation providing additional
contextual or other information that qualifies the main value. For instance, in Example 9 in Section 3.2, the
weight of a particular tent was given as the decimal value 2.4 using a typed literal, i.e.,

exproduct:item10245 exterms:weight "2.4"^^xsd:decimal .

In fact, a more complete description of the weight would have been 2.4 kilograms rather than just the decimal
value 2.4. To state this, the value of the exterms:weight property would need to have two components, the
typed literal for the decimal value and an indication of the unit of measure (kilograms). In this situation the
decimal value could be considered the "main" value of the exterms:weight property, because frequently the
value would be recorded simply as the typed literal (as in the triple above), relying on an understanding of the
context to fill in the unstated units information.

In the RDF model a qualified property value of this kind can be considered as simply another kind of structured
value. To represent this, a separate resource could be used to represent the structured value as a whole (the
weight, in this case), and to serve as the object of the original statement. That resource could then be given
properties representing the individual parts of the structured value. In this case, there should be a property for
the typed literal representing the decimal value, and a property for the unit. RDF provides a predefined
rdf:value
property to describe the main value (if there is one) of a structured value. So in this case, the typed literal could
be given as the value of the rdf:value property, and the resource exunits:kilograms as the value of an
exterms:units property (assuming the resource exunits:kilograms is defined as part of example.org's
vocabulary). The resulting triples would be:

exproduct:item10245 exterms:weight _:weight10245 .
_:weight10245 rdf:value "2.4"^^xsd:decimal .
_:weight10245 exterms:units exunits:kilograms .

which can be expressed using the RDF/XML shown in Example 21:

Example 21: RDF/XML using rdf:value
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:exterms="http://www.example.org/terms/">

 <rdf:Description rdf:about="http://www.example.com/2002/04/products#item10245">
 <exterms:weight rdf:parseType="Resource">
 <rdf:value rdf:datatype="&xsd;decimal">2.4</rdf:value>
 <exterms:units rdf:resource="http://www.example.org/units/kilograms"/>
 </exterms:weight>
 </rdf:Description>

</rdf:RDF>

Example 21 also illustrates a second use of the rdf:parseType attribute introduced in Section 4.2, in this case,
rdf:parseType="Resource". An rdf:parseType="Resource" attribute is used to indicate that the contents of an
element are to be interpreted as the description of a new (blank node) resource, without actually having to write

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

36 di 68 05/04/2008 18.46

a nested rdf:Description element. In this case, the rdf:parseType="Resource" attribute used in the
exterms:weight property element indicates that a blank node is to be created as the value of the
exterms:weight property, and that the enclosed elements (rdf:value and exterms:units) describe properties of
that blank node. Further details on rdf:parseType="Resource" are given in [RDF-SYNTAX].

The same approach can be used to represent quantities using any units of measure, as well as values taken
from different classification schemes or rating systems, by using the rdf:value property to give the main value,
and using additional properties to identify the classification scheme or other information that further describes
the value.

There is no need to use rdf:value for these purposes (e.g., a user-defined property name, such as
exterms:amount, could have been used instead of rdf:value in Example 21), and RDF does not associate any
special meaning with rdf:value. rdf:value is simply provided as a convenience for use in these
commonly-occurring situations.

However, even though much existing data in databases and on the Web (and in later Primer examples) takes
the form of simple values for properties such as weights, costs, etc., the principle that such simple values are
often insufficient to adequately describe these values is an important one. In a global environment such as the
Web, it is generally not
safe to make the assumption that anyone accessing a property value will understand the units being used (or
other contextually-dependent information that may be involved). For example, a U.S. site might give a weight
value in pounds, but someone accessing that data from outside the U.S. might assume that weights are given
in kilograms. The correct interpretation of data in the Web environment may require that additional information
(such as units information) be explicitly recorded. This can be done in many ways, such as using rdf:value,
building units into property names (e.g., exterms:weightInKg), defining specialized datatypes that include units
information (e.g., extypes:kilograms), or adding additional user-defined properties to specify this information
(e.g., exterms:unitOfWeight), either in descriptions of individual items or products, in descriptions of sets of
data (e.g., all the data in a catalog or on a site), or in schemas (see Section 5).

4.5 XML Literals

Sometimes the value of a property needs to be a fragment of XML, or text that might contain XML markup. For
example, a publisher might maintain RDF metadata that includes the titles of books and articles. While such
titles are often just simple strings of characters, this is not always the case. For instance, the titles of books on
mathematics may contain mathematical formulas that could be represented using MathML [MATHML]. Titles
might also include markup for other reasons, such as for Ruby annotations [RUBY], or for bidirectional
rendering or special glyph variants (see, e.g., [CHARMOD]).

RDF/XML provides a special notation to make it easy to write literals of this kind. This is done using a third
value of the rdf:parseType attribute. Giving an element the attribute rdf:parseType="Literal" indicates that
the contents of the element are to be interpreted as an XML fragment. Example 22 illustrates the use of
rdf:parseType="Literal":

Example 22: RDF/XML for an XML Literal
<?xml version="1.0"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xml:base="http://www.example.com/books">

 <rdf:Description rdf:ID="book12345">
 <dc:title rdf:parseType="Literal">

 The
 Element Considered Harmful.

 </dc:title>
 </rdf:Description>

</rdf:RDF>

The RDF/XML in Example 22 describes a graph containing a single triple with subject ex:book12345, and
predicate dc:title. The rdf:parseType="Literal" attribute in the RDF/XML indicates that all the XML within
the <dc:title> element is an XML fragment that is the value of the dc:title property. In the graph, this value
is a typed literal, whose datatype, rdf:XMLLiteral, is defined in [RDF-CONCEPTS] specifically to represent
fragments of XML (including character sequences that may or may not include XML markup). The XML
fragment is canonicalized according to the XML Exclusive Canonicalization recommendation [XML-XC14N].
This causes declarations of used namespaces to be added to the fragment, the uniform escaping or
unescaping of characters, the expansion of empty-element tags, and other transformations. (For these
reasons, and the fact that the triples notation itself requires further escaping, the actual typed literal is not
shown here. RDF/XML provides the rdf:parseType="Literal" attribute so that RDF users will not have to deal
directly with these transformations. Those interested in the details should consult [RDF-CONCEPTS] and
[RDF-SYNTAX].) Contextual attributes, such as xml:lang and xml:base are not inherited from the RDF/XML

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

37 di 68 05/04/2008 18.46

document, and, if required, must, as shown in the example, be explicitly specified in the XML fragment.

This example illustrates that care must be taken in designing RDF data. It might appear at first glance that titles
are simple strings best represented as plain literals, and only later might it be discovered that some titles
contain markup. In cases where the value of a property may sometimes contain markup and sometimes not,
either rdf:parseType="Literal"
should be used throughout, or software must handle both plain literals and literals of type rdf:XMLLiteral as
values of the property.

5. Defining RDF Vocabularies: RDF Schema

RDF provides a way to express simple statements about resources, using named properties and values.
However, RDF user communities also need the ability to define the vocabularies (terms) they intend to use in
those statements, specifically,
to indicate that they are describing specific kinds or classes of resources, and will use specific properties in
describing those resources. For example, the company example.com from the examples in Section 3.2 would
want to describe classes such as exterms:Tent, and use properties such as exterms:model,
exterms:weightInKg, and exterms:packedSize to describe them (QNames with various "example" namespace
prefixes are used as the names of classes and properties here as a reminder that in RDF these names are
actually URI references, as discussed in Section 2.1). Similarly, people interested in describing bibliographic
resources would want to describe classes such as ex2:Book or ex2:MagazineArticle, and use properties such
as ex2:author, ex2:title, and ex2:subject to describe them. Other applications might need to describe
classes such as ex3:Person and ex3:Company, and properties such as ex3:age, ex3:jobTitle, ex3:stockSymbol,
and ex3:numberOfEmployees.
RDF itself provides no means for defining such application-specific classes and properties. Instead, such
classes and properties are described as an RDF vocabulary, using extensions to RDF provided by the RDF
Vocabulary Description Language 1.0: RDF Schema [RDF-VOCABULARY], referred to here as RDF Schema.

RDF Schema does not provide a vocabulary of application-specific classes like exterms:Tent, ex2:Book, or
ex3:Person, and properties like exterms:weightInKg, ex2:author or ex3:JobTitle. Instead, it provides the
facilities needed to describe
such classes and properties, and to indicate which classes and properties are expected to be used together
(for example, to say that the property ex3:jobTitle will be used in describing a ex3:Person). In other words,
RDF Schema provides a type system
for RDF. The RDF Schema type system is similar in some respects to the type systems of object-oriented
programming languages such as Java. For example, RDF Schema allows resources to be defined as
instances of one or more classes. In addition, it allows classes to be organized in a hierarchical fashion; for
example a class ex:Dog might be defined as a subclass of ex:Mammal which is a subclass of ex:Animal, meaning
that any resource which is in class ex:Dog is also implicitly in class ex:Animal as well. However, RDF classes
and properties are in some respects very different from programming language types. RDF class and property
descriptions do not create a straightjacket into which information must be forced, but instead provide additional
information about the RDF resources they describe. This information can be used in a variety of ways, which
will be discussed in Section 5.3.

The RDF Schema facilities are themselves provided in the form of an RDF vocabulary; that is, as a specialized
set of predefined RDF resources with their own special meanings. The resources in the RDF Schema
vocabulary have URIrefs with the prefix http://www.w3.org/2000/01/rdf-schema# (conventionally associated
with the QName prefix rdfs:). Vocabulary descriptions (schemas) written in the RDF Schema language are
legal RDF graphs. Hence, RDF software that is not written to also process the additional RDF Schema
vocabulary can still interpret a schema as a legal RDF graph consisting of various resources and properties,
but will not "understand" the additional built-in meanings of the RDF Schema terms. To understand these
additional meanings, RDF software must be written to process an extended language that includes not only the
rdf: vocabulary, but also the rdfs:
vocabulary, together with their built-in meanings. This point will be illustrated in the next section.

The following sections will illustrate RDF Schema's basic resources and properties.

5.1 Describing Classes

A basic step in any kind of description process is identifying the various kinds of things to be described. RDF
Schema refers to these "kinds of things" as classes. A class in RDF Schema corresponds to the generic
concept of a Type or Category, somewhat like the notion of a class in object-oriented programming languages
such as Java. RDF classes can be used to represent almost any category of thing, such as Web pages,
people, document types, databases or abstract concepts. Classes are described using the RDF Schema
resources rdfs:Class and rdfs:Resource, and the properties rdf:type and rdfs:subClassOf.

For example, suppose an organization example.org wanted to use RDF to provide information about different
kinds of motor vehicles. In RDF Schema, example.org would first need a class to represent the category of

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

38 di 68 05/04/2008 18.46

things that are motor vehicles. The resources that belong to a class are called its instances. In this case,
example.org intends for the instances of this class to be resources that are motor vehicles.

In RDF Schema, a class is any resource having an rdf:type property whose value is the resource rdfs:Class.
So the motor vehicle class would be described by assigning the class a URIref, say ex:MotorVehicle (using ex:
to stand for the URIref http://www.example.org/schemas/vehicles, which is used as the prefix for URIrefs from
example.org's vocabulary) and describing that resource with an rdf:type property whose value is the resource
rdfs:Class. That is, example.org would write the RDF statement:

ex:MotorVehicle rdf:type rdfs:Class .

As indicated in Section 3.2, the property rdf:type is used to indicate that a resource is an instance of a class.
So, having described ex:MotorVehicle as a class, resource exthings:companyCar would be described as a
motor vehicle by the RDF statement:

exthings:companyCar rdf:type ex:MotorVehicle .

(This statement uses a common convention that class names are written with an initial uppercase letter, while
property and instance names are written with an initial lowercase letter. However, this convention is not
required in RDF Schema. The statement also assumes that example.org has decided to define separate
vocabularies for classes of things, and instances of things.)

The resource rdfs:Class itself has an rdf:type of rdfs:Class. A resource may be an instance of more than
one class.

After describing class ex:MotorVehicle, example.org might want to describe additional classes representing
various specialized kinds of motor vehicle, e.g., passenger vehicles, vans, minivans, and so on. These classes
can be described in the same way as class ex:MotorVehicle, by assigning a URIref for each new class, and
writing RDF statements describing these resources as classes, e.g., writing:

ex:Van rdf:type rdfs:Class .
ex:Truck rdf:type rdfs:Class .

and so on. However, these statements by themselves only describe the individual classes. example.org may
also want to indicate their special relationship to class ex:MotorVehicle, i.e., that they are specialized kinds of
MotorVehicle.

This kind of specialization relationship between two classes is described using the predefined rdfs:subClassOf
property to relate the two classes. For example, to state that ex:Van is a specialized kind of ex:MotorVehicle,
example.org would write the RDF statement:

ex:Van rdfs:subClassOf ex:MotorVehicle .

The meaning of this rdfs:subClassOf relationship is that any instance of class ex:Van is also an instance of
class ex:MotorVehicle. So if resource exthings:companyVan is an instance of ex:Van then, based on the
declared rdfs:subClassOf relationship, RDF software written to understand the RDF Schema vocabulary can
infer the additional information that exthings:companyVan is also an instance of ex:MotorVehicle.

This example of exthings:companyVan
illustrates the point made earlier about RDF Schema defining an extended language. RDF itself does not
define the special meaning of terms from the RDF Schema vocabulary such as rdfs:subClassOf. So if an RDF
schema defines this rdfs:subClassOf relationship between ex:Van and ex:MotorVehicle, RDF software not
written to understand the RDF Schema terms would recognize this as a triple, with predicate rdfs:subClassOf,
but it would not understand the special significance of rdfs:subClassOf, and not be able to draw the additional
inference that exthings:companyVan is also an instance of ex:MotorVehicle.

The rdfs:subClassOf property is transitive. This means, for example, that given the RDF statements:

ex:Van rdfs:subClassOf ex:MotorVehicle .
ex:MiniVan rdfs:subClassOf ex:Van .

RDF Schema defines ex:MiniVan as also being a subclass of ex:MotorVehicle. As a result, RDF Schema
defines resources that are instances of class ex:MiniVan as also being instances of class ex:MotorVehicle (as
well as being instances of class ex:Van). A class may be a subclass of more than one class (for example,
ex:MiniVan may be a subclass of both ex:Van and ex:PassengerVehicle). RDF Schema defines all classes as
subclasses of class rdfs:Resource (since the instances belonging to all classes are resources).

Figure 18 shows the full class hierarchy being discussed in these examples.

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

39 di 68 05/04/2008 18.46

Figure 18: A Vehicle Class Hierarchy

(To simplify the figure, the rdf:type properties relating each of the classes to rdfs:Class are omitted in Figure
18. In fact, RDF Schema defines both the subjects and objects of statements that use the rdfs:subClassOf
property to be resources of type rdfs:Class, so this information could be inferred. However, in actually writing
schemas, it is good practice to explicitly provide this information.)

This schema could also be described by the triples:

ex:MotorVehicle rdf:type rdfs:Class .
ex:PassengerVehicle rdf:type rdfs:Class .
ex:Van rdf:type rdfs:Class .
ex:Truck rdf:type rdfs:Class .
ex:MiniVan rdf:type rdfs:Class .

ex:PassengerVehicle rdfs:subClassOf ex:MotorVehicle .
ex:Van rdfs:subClassOf ex:MotorVehicle .
ex:Truck rdfs:subClassOf ex:MotorVehicle .

ex:MiniVan rdfs:subClassOf ex:Van .
ex:MiniVan rdfs:subClassOf ex:PassengerVehicle .

Example 23 shows how this schema could be written in RDF/XML.

Example 23: The Vehicle Class Hierarchy in RDF/XML
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xml:base="http://example.org/schemas/vehicles">

<rdf:Description rdf:ID="MotorVehicle">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
</rdf:Description>

<rdf:Description rdf:ID="PassengerVehicle">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdf:Description>

<rdf:Description rdf:ID="Truck">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdf:Description>

<rdf:Description rdf:ID="Van">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdf:Description>

<rdf:Description rdf:ID="MiniVan">
 <rdf:type rdf:resource="http://www.w3.org/2000/01/rdf-schema#Class"/>
 <rdfs:subClassOf rdf:resource="#Van"/>
 <rdfs:subClassOf rdf:resource="#PassengerVehicle"/>
</rdf:Description>

</rdf:RDF>

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

40 di 68 05/04/2008 18.46

As discussed in Section 3.2 in connection with Example 13, RDF/XML provides an abbreviation for describing
resources having an rdf:type property (typed nodes). Since RDF Schema classes are RDF resources, this
abbreviation can be applied to the description of classes. Using this abbreviation, the schema could also be
described as shown in Example 24:

Example 24: The Vehicle Class Hierarchy Using the Typed Node Abbreviation
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xml:base="http://example.org/schemas/vehicles">

<rdfs:Class rdf:ID="MotorVehicle"/>

<rdfs:Class rdf:ID="PassengerVehicle">
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdfs:Class>

<rdfs:Class rdf:ID="Truck">
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdfs:Class>

<rdfs:Class rdf:ID="Van">
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdfs:Class>

<rdfs:Class rdf:ID="MiniVan">
 <rdfs:subClassOf rdf:resource="#Van"/>
 <rdfs:subClassOf rdf:resource="#PassengerVehicle"/>
</rdfs:Class>

</rdf:RDF>

Similar typed node abbreviations will be used throughout the rest of this section.

The RDF/XML in Example 23 and Example 24 introduces names, such as MotorVehicle, for the resources
(classes) that it describes using rdf:ID, to give the effect of "assigning" URIrefs relative to the schema
document as described in Section 3.2. rdf:ID is useful here because it both abbreviates the URIrefs, and also
provides an additional check that the value of the rdf:ID attribute is unique against the current base URI
(usually the document URI). This helps pick up repeated rdf:ID values when defining the names of classes
and properties in RDF schemas.
Relative URIrefs based on these names can then be used in other class definitions within the same schema
(e.g., as #MotorVehicle
is used in the description of the other classes). The full URIref of this class, assuming that the schema itself
was the resource http://example.org/schemas/vehicles, would be
http://example.org/schemas/vehicles#MotorVehicle (shown in Figure 18). As noted in Section 3.2, to ensure
that the references to these schema classes would be consistently maintained even if the schema were
relocated or copied (or to simply assign a base URIref for the schema classes without assuming they are all
published at a single location), the class descriptions could also include an explicit
xml:base="http://example.org/schemas/vehicles" declaration. Use of an explicit xml:base declaration is
considered good practice, and one is provided in both examples.

To refer to these classes in RDF instance data (e.g., data describing individual vehicles of these classes)
located elsewhere, example.org would need to identify the classes either by writing absolute URIrefs, by using
relative URIrefs together with an appropriate xml:base declaration, or by using QNames together with an
appropriate namespace declaration that allows the QNames to be expanded to the proper URIrefs. For
example, the resource exthings:companyCar could be described as an instance of the class ex:MotorVehicle
described in the schema of Example 24 by the RDF/XML shown in Example 25 :

Example 25: An Instance of ex:MotorVehicle
<?xml version="1.0"?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://example.org/schemas/vehicles#"
 xml:base="http://example.org/things">

 <ex:MotorVehicle rdf:ID="companyCar"/>

</rdf:RDF>

Note that the QName ex:MotorVehicle, when expanded using the namespace declaration
xmlns:ex="http://example.org/schemas/vehicles#", becomes the full URIref
http://example.org/schemas/vehicles#MotorVehicle, which is the correct URIref for the MotorVehicle class as
shown in Figure 18. The xml:base declaration xml:base="http://example.org/things" is provided to allow the
rdf:ID="companyCar" to expand to the proper exthings:companyCar URIref (since a QName cannot be used as

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

41 di 68 05/04/2008 18.46

the value of the rdf:ID attribute).

5.2 Describing Properties

In addition to describing the specific classes of things they want to describe, user communities also need to be
able to describe specific properties that characterize those classes of things (such as rearSeatLegRoom to
describe a passenger vehicle). In RDF Schema, properties are described using the RDF class rdf:Property,
and the RDF Schema properties rdfs:domain, rdfs:range, and rdfs:subPropertyOf.

All properties in RDF are described as instances of class rdf:Property. So a new property, such as
exterms:weightInKg, is described by assigning the property a URIref, and describing that resource with an
rdf:type property whose value is the resource rdf:Property, for example, by writing the RDF statement:

exterms:weightInKg rdf:type rdf:Property .

RDF Schema also provides vocabulary for describing how properties and classes are intended to be used
together in RDF data. The most important information of this kind is supplied by using the RDF Schema
properties rdfs:range and rdfs:domain to further describe application-specific properties.

The rdfs:range
property is used to indicate that the values of a particular property are instances of a designated class. For
example, if example.org wanted to indicate that the property ex:author had values that are instances of class
ex:Person, it would write the RDF statements:

ex:Person rdf:type rdfs:Class .
ex:author rdf:type rdf:Property .
ex:author rdfs:range ex:Person .

These statements indicate that ex:Person is a class, ex:author is a property, and that RDF statements using
the ex:author property have instances of ex:Person as objects.

A property, say ex:hasMother, can have zero, one, or more than one range property. If ex:hasMother has no
range property, then nothing is said about the values of the ex:hasMother property. If ex:hasMother has one
range property, say one specifying ex:Person as the range, this says that the values of the ex:hasMother
property are instances of class ex:Person. If ex:hasMother has more than one range property, say one
specifying ex:Person as its range, and another specifying ex:Female as its range, this says that the values of
the ex:hasMother property are resources that are instances of all of the classes specified as the ranges, i.e.,
that any value of ex:hasMother is both a ex:Female and a ex:Person.

This last point may not be obvious. However, stating that the property ex:hasMother has the two ranges
ex:Female and ex:Person involves making two separate statements:

ex:hasMother rdfs:range ex:Female .
ex:hasMother rdfs:range ex:Person .

For any given statement using this property, say:

exstaff:frank ex:hasMother exstaff:frances .

in order for both the rdfs:range statements to be correct, it must be the case that exstaff:frances is both an
instance of ex:Female and of ex:Person.

The rdfs:range
property can also be used to indicate that the value of a property is given by a typed literal, as discussed in
Section 2.4. For example, if example.org wanted to indicate that the property ex:age had values from the XML
Schema datatype xsd:integer, it would write the RDF statements:

ex:age rdf:type rdf:Property .
ex:age rdfs:range xsd:integer .

The datatype xsd:integer is identified by its URIref (the full URIref being
http://www.w3.org/2001/XMLSchema#integer). This URIref can be used without explicitly stating in the schema
that it identifies a datatype. However, it is often useful to explicitly state that a given URIref identifies a
datatype. This can be done using the RDF Schema class rdfs:Datatype. To state that xsd:integer is a
datatype, example.org would write the RDF statement:

xsd:integer rdf:type rdfs:Datatype .

This statement says that xsd:integer is the URIref of a datatype (which is assumed to conform to the

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

42 di 68 05/04/2008 18.46

requirements for RDF datatypes described in [RDF-CONCEPTS]). Such a statement does not constitute a
definition of a datatype, e.g., in the sense that example.org is defining a new datatype. There is no way to
define datatypes in RDF Schema. As noted in Section 2.4, datatypes are defined externally to RDF (and to
RDF Schema), and referred to
in RDF statements by their URIrefs. This statement simply serves to document the existence of the datatype,
and indicate explicitly that it is being used in this schema.

The rdfs:domain
property is used to indicate that a particular property applies to a designated class. For example, if example.org
wanted to indicate that the property ex:author applies to instances of class ex:Book, it would write the RDF
statements:

ex:Book rdf:type rdfs:Class .
ex:author rdf:type rdf:Property .
ex:author rdfs:domain ex:Book .

These statements indicate that ex:Book is a class, ex:author is a property, and that RDF statements using the
ex:author property have instances of ex:Book as subjects.

A given property, say exterms:weight, may have zero, one, or more than one domain property. If
exterms:weight has no domain property, then nothing is said about the resources that exterms:weight
properties may be used with (any resource could have a exterms:weight property). If exterms:weight has one
domain property, say one specifying ex:Book as the domain, this says that the exterms:weight property applies
to instances of class ex:Book. If exterms:weight has more than one domain property, say one specifying
ex:Book as the domain and another one specifying ex:MotorVehicle as the domain, this says that any resource
that has a exterms:weight property is an instance of all of the classes specified as the domains, i.e., that any
resource that has a exterms:weight property is both a ex:Book and a ex:MotorVehicle (illustrating the need for
care in specifying domains and ranges).

As in the case of rdfs:range, this last point may not be obvious. However, stating that the property
exterms:weight has the two domains ex:Book and ex:MotorVehicle involves making two separate statements:

exterms:weight rdfs:domain ex:Book .
exterms:weight rdfs:domain ex:MotorVehicle .

For any given statement using this property, say:

exthings:companyCar exterms:weight "2500"^^xsd:integer .

in order for both the rdfs:domain statements to be correct, it must be the case that exthings:companyCar is both
an instance of ex:Book and of ex:MotorVehicle.

The use of these range and domain descriptions can be illustrated by extending the vehicle schema, adding
two properties ex:registeredTo and ex:rearSeatLegRoom, a new class ex:Person, and explicitly describing the
datatype xsd:integer as a datatype. The ex:registeredTo property applies to any ex:MotorVehicle and its
value is a ex:Person. For the sake of this example, ex:rearSeatLegRoom applies only to instances of class
ex:PassengerVehicle. The value is an xsd:integer giving the number of centimeters of rear seat legroom.
These descriptions are shown in Example 26:

Example 26: Some Property Descriptions for the Vehicle Schema
<rdf:Property rdf:ID="registeredTo">
 <rdfs:domain rdf:resource="#MotorVehicle"/>
 <rdfs:range rdf:resource="#Person"/>
</rdf:Property>

<rdf:Property rdf:ID="rearSeatLegRoom">
 <rdfs:domain rdf:resource="#PassengerVehicle"/>
 <rdfs:range rdf:resource="&xsd;integer"/>
</rdf:Property>

<rdfs:Class rdf:ID="Person"/>

<rdfs:Datatype rdf:about="&xsd;integer"/>

Note that an <rdf:RDF> element is not used in Example 26, because it is assumed this RDF/XML is being
added to the vehicle schema described in Example 24. This same assumption also allows the use of relative
URIrefs like #MotorVehicle to refer to other classes from that schema.

RDF Schema provides a way to specialize properties as well as classes. This specialization relationship
between two properties is described using the predefined rdfs:subPropertyOf property. For example, if
ex:primaryDriver and ex:driver are both properties, example.org could describe these properties, and the fact
that ex:primaryDriver is a specialization of ex:driver, by writing the RDF statements:

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

43 di 68 05/04/2008 18.46

ex:driver rdf:type rdf:Property .
ex:primaryDriver rdf:type rdf:Property .
ex:primaryDriver rdfs:subPropertyOf ex:driver .

The meaning of this rdfs:subPropertyOf relationship is that if an instance exstaff:fred is an ex:primaryDriver
of the instance ex:companyVan, then RDF Schema defines exstaff:fred as also being an ex:driver of
ex:companyVan.
The RDF/XML describing these properties (assuming again that it is being added to the vehicle schema
described in Example 24) is shown in Example 27.

Example 27: More Properties for the Vehicle Schema
<rdf:Property rdf:ID="driver">
 <rdfs:domain rdf:resource="#MotorVehicle"/>
</rdf:Property>

<rdf:Property rdf:ID="primaryDriver">
 <rdfs:subPropertyOf rdf:resource="#driver"/>
</rdf:Property>

A property may be a subproperty of zero, one or more properties. All RDF Schema rdfs:range and
rdfs:domain
properties that apply to an RDF property also apply to each of its subproperties. So, in the above example,
RDF Schema defines ex:primaryDriver as also having an rdfs:domain of ex:MotorVehicle, because of its
subproperty relationship to ex:driver.

Example 28 shows the RDF/XML for the full vehicle schema, containing all the descriptions given so far:

Example 28: The Full Vehicle Schema
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xml:base="http://example.org/schemas/vehicles">

<rdfs:Class rdf:ID="MotorVehicle"/>

<rdfs:Class rdf:ID="PassengerVehicle">
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdfs:Class>

<rdfs:Class rdf:ID="Truck">
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdfs:Class>

<rdfs:Class rdf:ID="Van">
 <rdfs:subClassOf rdf:resource="#MotorVehicle"/>
</rdfs:Class>

<rdfs:Class rdf:ID="MiniVan">
 <rdfs:subClassOf rdf:resource="#Van"/>
 <rdfs:subClassOf rdf:resource="#PassengerVehicle"/>
</rdfs:Class>

<rdfs:Class rdf:ID="Person"/>

<rdfs:Datatype rdf:about="&xsd;integer"/>

<rdf:Property rdf:ID="registeredTo">
 <rdfs:domain rdf:resource="#MotorVehicle"/>
 <rdfs:range rdf:resource="#Person"/>
</rdf:Property>

<rdf:Property rdf:ID="rearSeatLegRoom">
 <rdfs:domain rdf:resource="#PassengerVehicle"/>
 <rdfs:range rdf:resource="&xsd;integer"/>
</rdf:Property>

<rdf:Property rdf:ID="driver">
 <rdfs:domain rdf:resource="#MotorVehicle"/>
</rdf:Property>

<rdf:Property rdf:ID="primaryDriver">
 <rdfs:subPropertyOf rdf:resource="#driver"/>
</rdf:Property>

</rdf:RDF>

Having shown how to describe classes and properties using RDF Schema, instances using those classes and
properties can now be illustrated. For example, Example 29 describes an instance of the ex:PassengerVehicle
class described in Example 28, together with some hypothetical values for its properties.

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

44 di 68 05/04/2008 18.46

Example 29: An Instance of ex:PassengerVehicle
<?xml version="1.0"?>
<!DOCTYPE rdf:RDF [<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">]>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://example.org/schemas/vehicles#"
 xml:base="http://example.org/things">

 <ex:PassengerVehicle rdf:ID="johnSmithsCar">
 <ex:registeredTo rdf:resource="http://www.example.org/staffid/85740"/>
 <ex:rearSeatLegRoom
 rdf:datatype="&xsd;integer">127</ex:rearSeatLegRoom>
 <ex:primaryDriver rdf:resource="http://www.example.org/staffid/85740"/>
 </ex:PassengerVehicle>
</rdf:RDF>

This example assumes that the instance is described in a separate document from the schema. Since the
schema has an xml:base of http://example.org/schemas/vehicles, the namespace declaration
xmlns:ex="http://example.org/schemas/vehicles#" is provided to allow QNames such as ex:registeredTo in
the instance data to be properly expanded to the URIrefs of the classes and properties described in that
schema. An xml:base declaration is also provided for this instance, to allow rdf:ID="johnSmithsCar" to expand
to the proper URIref independently of the location of the actual document.

Note that an ex:registeredTo property can be used in describing this instance of ex:PassengerVehicle,
because ex:PassengerVehicle is a subclass of ex:MotorVehicle. Note also that a typed literal is used for the
value of the ex:rearSetLegRoom property in this instance, rather than a plain literal (i.e., rather than stating the
value as <ex:rearSeatLegRoom>127</ex:rearSeatLegRoom>). Because the schema describes the range of this
property as an xsd:integer, the value of the property should be a typed literal of that datatype in order to
match the range description
(i.e., the range declaration does not automatically "assign" a datatype to a plain literal, and so a typed literal of
the appropriate datatype must be explicitly provided). Additional information, either in the schema, or in
additional instance data, could also be provided to explicitly specify the units of the ex:rearSetLegRoom property
(centimeters), as discussed in Section 4.4.

5.3 Interpreting RDF Schema Declarations

As noted earlier, the RDF Schema type system is similar in some respects to the type systems of
object-oriented programming languages such as Java. However, RDF differs from most programming
language type systems in several important respects.

One important difference is that instead of describing a class as having a collection of specific properties, an
RDF schema describes properties as applying to specific classes of resources, using domain and range
properties. For example, a typical object-oriented programming language might define a class Book with an
attribute called author having values of type Person. A corresponding RDF schema would describe a class
ex:Book, and, in a separate description, a property ex:author having a domain of ex:Book and a range of
ex:Person.

The difference between these approaches may seem to be only syntactic, but in fact there is an important
difference. In the programming language class description, the attribute author is part of the description of
class Book, and applies only to instances of class Book. Another class (say, softwareModule) might also have an
attribute called author, but this would be considered a different attribute. In other words, the scope of an
attribute description in most programming languages is restricted to the class or type in which it is defined. In
RDF, on the other hand, property descriptions are, by default, independent of class definitions, and have, by
default, global
scope (although they may optionally be declared to apply only to certain classes using domain specifications).

As a result, an RDF schema could describe a property exterms:weight without a domain being specified. This
property could then be used to describe instances of any class that might be considered to have a weight. One
benefit of the RDF property-based approach is that it becomes easier to extend the use of property definitions
to situations that might not have been anticipated in the original description. At the same time, this is a "benefit"
which must be used with care, to insure that properties are not mis-applied in inappropriate situations.

Another result of the global scope of RDF property descriptions is that it is not possible in an RDF schema to
define a specific property as having locally-different ranges depending on the class of the resource it is applied
to. For example, in defining the property ex:hasParent, it would be desirable to be able to say that if the
property is used to describe a resource of class ex:Human, then the range of the property is also a resource of
class ex:Human, while if the property is used to describe a resource of class ex:Tiger, then the range of the
property is also a resource of class ex:Tiger. This kind of definition is not possible in RDF Schema. Instead,
any range defined for an RDF property applies to all uses of the property, and so ranges should be defined
with care. However, while such locally-different ranges cannot be defined in RDF Schema, they can be defined
in some of the richer schema languages discussed in Section 5.5.

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

45 di 68 05/04/2008 18.46

Another important difference is that RDF Schema descriptions are not necessarily prescriptive in the way
programming language type declarations typically are. For example, if a programming language declares a
class Book with an author attribute having values of type Person, this is usually interpreted as a group of
constraints. The language will not allow the creation of an instance of Book without an author attribute, and it
will not allow an instance of Book with an author attribute that does not have a Person as its value. Moreover, if
author is the only attribute defined for class Book, the language will not allow an instance of Book with some
other attribute.

RDF Schema, on the other hand, provides schema information as additional descriptions of resources, but
does not prescribe how these descriptions should be used by an application. For example, suppose an RDF
schema states that an ex:author property has an rdfs:range of class ex:Person. This is simply an RDF
statement that RDF statements containing ex:author properties have instances of ex:Person as objects.

This schema-supplied information might be used in different ways. One application might interpret this
statement as specifying part of a template for RDF data it is creating, and use it to ensure that any ex:author
property has a value of the indicated (ex:Person) class. That is, this application interprets the schema
description as a constraint
in the same way that a programming language might. However, another application might interpret this
statement as providing additional information about data it is receiving, information which may not be provided
explicitly in the original data. For example, this second application might receive some RDF data that includes
an ex:author
property whose value is a resource of unspecified class, and use this schema-provided statement to conclude
that the resource must be an instance of class ex:Person. A third application might receive some RDF data that
includes an ex:author property whose value is a resource of class ex:Corporation, and use this schema
information as the basis of a warning that "there may be an inconsistency here, but on the other hand there
may not be". Somewhere else there may be a declaration that resolves the apparent inconsistency (e.g., a
declaration to the effect that "a Corporation is a (legal) Person").

Moreover, depending on how the application interprets the property descriptions, a description of an instance
might be considered valid either without some of the schema-specified properties (e.g., there might be an
instance of ex:Book without an ex:author property, even if ex:author is described as having a domain of
ex:Book), or with additional properties (there might be an instance of ex:Book with an ex:technicalEditor
property, even though the schema describing class ex:Book does not describe such a property).

In other words, statements in an RDF schema are always descriptions. They may also be prescriptive
(introduce constraints), but only if the application interpreting those statements wants to treat them that way. All
RDF Schema does is provide a way of stating this additional information. Whether this information conflicts
with explicitly specified instance data is up to the application to determine and act upon.

5.4 Other Schema Information

RDF Schema provides a number of other built-in properties, which can be used to provide documentation and
other information about an RDF schema or about instances. For example the rdfs:comment property can be
used to provide a human-readable description of a resource. The rdfs:label property can be used to provide a
more human-readable version of a resource's name. The rdfs:seeAlso property can be used to indicate a
resource that might provide additional information about the subject resource. The rdfs:isDefinedBy property
is a subproperty of rdfs:seeAlso, and can be used to indicate a resource that (in a sense not specified by RDF;
e.g., the resource may not be an RDF schema) "defines" the subject resource. RDF Vocabulary Description
Language 1.0: RDF Schema [RDF-VOCABULARY] should be consulted for further discussion of these
properties.

As with a number of the built-in RDF properties such as rdf:value, the uses described for these RDF Schema
properties are only their intended uses. [RDF-SEMANTICS] defines no special meanings for these properties,
and RDF Schema does not define any constraints based on these intended uses. For example, there is no
constraint specified that the object of a rdfs:seeAlso property must provide additional information about the
subject of the statement in which it appears.

5.5 Richer Schema Languages

RDF Schema provides basic capabilities for describing RDF vocabularies, but additional capabilities are also
possible, and can be useful. These capabilities may be provided through further development of RDF Schema,
or in other languages based on RDF. Other richer schema capabilities that have been identified as useful (but
that are not provided by RDF Schema) include:

cardinality constraints on properties, e.g., that a Person has exactly one biological father.
specifying that a given property (such as ex:hasAncestor) is transitive, e.g., that if A ex:hasAncestor B,
and B ex:hasAncestor C, then A ex:hasAncestor C.
specifying that a given property is a unique identifier (or key) for instances of a particular class.

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

46 di 68 05/04/2008 18.46

specifying that two different classes (having different URIrefs) actually represent the same class.
specifying that two different instances (having different URIrefs) actually represent the same individual.
specifying constraints on the range or cardinality of a property that depend on the class of resource to
which a property is applied, e.g., being able to say that for a soccer team the ex:hasPlayers property has
11 values, while for a basketball team the same property should have only 5 values.
the ability to describe new classes in terms of combinations (e.g., unions and intersections) of other
classes, or to say that two classes are disjoint (i.e., that no resource is an instance of both classes).

The additional capabilities mentioned above, in addition to others, are the targets of ontology languages such
as DAML+OIL [DAML+OIL] and OWL [OWL]. Both these languages are based on RDF and RDF Schema (and
both currently provide all the additional capabilities mentioned above). The intent of such languages is to
provide additional machine-processable semantics for resources, that is, to make the machine representations
of resources more closely resemble their intended real world counterparts. While such capabilities are not
necessarily needed to build useful applications using RDF (see Section 6 for a description of a number of
existing RDF applications), the development of such languages is a very active subject of work as part of the
development of the Semantic Web.

6. Some RDF Applications: RDF in the Field

The previous sections have described the general capabilities of RDF and RDF Schema. While examples were
used in those sections to illustrate those capabilities, and some of those examples may have suggested
potential RDF applications, those sections did not actually discuss any real applications. This section will
describe some actual deployed RDF applications, showing how RDF supports various real-world requirements
to represent and manipulate information about a wide variety of things.

6.1 Dublin Core Metadata Initiative

Metadata is data about data. Specifically, the term refers to data used to identify, describe, or locate
information resources, whether these resources are physical or electronic. While structured metadata
processed by computers is relatively new, the basic concept of metadata has been used for many years in
helping manage and use large collections of information. Library card catalogs are a familiar example of such
metadata.

The Dublin Core is a set of "elements" (properties) for describing documents (and hence, for recording
metadata). The element set was originally developed at the March 1995 Metadata Workshop in Dublin, Ohio.
The Dublin Core has subsequently been modified on the basis of later Dublin Core Metadata workshops, and
is currently maintained by the Dublin Core Metadata Initiative. The goal of the Dublin Core is to provide a
minimal set of descriptive elements that facilitate the description and the automated indexing of document-like
networked objects, in a manner similar to a library card catalog. The Dublin Core metadata set is intended to
be suitable for use by resource discovery tools on the Internet, such as the "Webcrawlers" employed by
popular World Wide Web search engines. In addition, the Dublin Core is meant to be sufficiently simple to be
understood and used by the wide range of authors and casual publishers who contribute information to the
Internet. Dublin Core elements have become widely used in documenting Internet resources (the Dublin Core
creator
element has already been used in earlier examples). The current elements of the Dublin Core are defined in
the Dublin Core Metadata Element Set, Version 1.1: Reference Description [DC], and contain definitions for the
following properties:

Title: A name given to the resource.
Creator: An entity primarily responsible for making the content of the resource.
Subject: The topic of the content of the resource.
Description: An account of the content of the resource.
Publisher: An entity responsible for making the resource available
Contributor: An entity responsible for making contributions to the content of the resource.
Date: A date associated with an event in the life cycle of the resource.
Type: The nature or genre of the content of the resource.
Format: The physical or digital manifestation of the resource.
Identifier: An unambiguous reference to the resource within a given context.
Source: A reference to a resource from which the present resource is derived.
Language: A language of the intellectual content of the resource.
Relation: A reference to a related resource.
Coverage: The extent or scope of the content of the resource.
Rights: Information about rights held in and over the resource.

Information using the Dublin Core elements may be represented in any suitable language (e.g., in HTML meta
elements). However, RDF is an ideal representation for Dublin Core information. The examples below
represent the simple description of a set of resources in RDF using the Dublin Core vocabulary. Note that the

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

47 di 68 05/04/2008 18.46

specific Dublin Core RDF vocabulary shown here is not intended to be authoritative. The Dublin Core
Reference Description [DC] is the authoritative reference.

The first example, Example 30, describes a Web site home page using Dublin Core properties:

Example 30: A Web Page Described using Dublin Core Properties
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">
 <rdf:Description rdf:about="http://www.dlib.org">
 <dc:title>D-Lib Program - Research in Digital Libraries</dc:title>
 <dc:description>The D-Lib program supports the community of people
 with research interests in digital libraries and electronic
 publishing.</dc:description>
 <dc:publisher>Corporation For National Research Initiatives</dc:publisher>
 <dc:date>1995-01-07</dc:date>
 <dc:subject>
 <rdf:Bag>
 <rdf:li>Research; statistical methods</rdf:li>
 <rdf:li>Education, research, related topics</rdf:li>
 <rdf:li>Library use Studies</rdf:li>
 </rdf:Bag>
 </dc:subject>
 <dc:type>World Wide Web Home Page</dc:type>
 <dc:format>text/html</dc:format>
 <dc:language>en</dc:language>
 </rdf:Description>
</rdf:RDF>

Note that both RDF and the Dublin Core define an (XML) element called "Description" (although the Dublin
Core element name is written in lowercase). Even if the initial letter were identically uppercase, the XML
namespace mechanism enables these two elements to be distinguished (one is rdf:Description, and the
other is dc:description). Also, as a matter of interest, accessing http://purl.org/dc/elements/1.1/ (the
namespace URI used to identify the Dublin Core vocabulary in this example) in a Web browser (as of the
current writing) will retrieve an RDF Schema declaration for [DC].

The second example, Example 31, describes a published magazine:

Example 31: Describing A Magazine Using Dublin Core
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:dcterms="http://purl.org/dc/terms/">
 <rdf:Description rdf:about="http://www.dlib.org/dlib/may98/05contents.html">
 <dc:title>DLIB Magazine - The Magazine for Digital Library Research
 - May 1998</dc:title>
 <dc:description>D-LIB magazine is a monthly compilation of
 contributed stories, commentary, and briefings.</dc:description>
 <dc:contributor>Amy Friedlander</dc:contributor>
 <dc:publisher>Corporation for National Research Initiatives</dc:publisher>
 <dc:date>1998-01-05</dc:date>
 <dc:type>electronic journal</dc:type>
 <dc:subject>
 <rdf:Bag>
 <rdf:li>library use studies</rdf:li>
 <rdf:li>magazines and newspapers</rdf:li>
 </rdf:Bag>
 </dc:subject>
 <dc:format>text/html</dc:format>
 <dc:identifier rdf:resource="urn:issn:1082-9873"/>
 <dcterms:isPartOf rdf:resource="http://www.dlib.org"/>
 </rdf:Description>
 </rdf:RDF>

Example 31 uses (in the third line from the bottom) the Dublin Core qualifier isPartOf (from a separate
vocabulary) to indicate that this magazine is "part of" the previously-described Web site.

The third example, Example 32, describes a specific article in the magazine described in Example 31.

Example 32: Describing a Magazine Article
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:dcterms="http://purl.org/dc/terms/">
 <rdf:Description rdf:about="http://www.dlib.org/dlib/may98/miller/05miller.html">
 <dc:title>An Introduction to the Resource Description Framework</dc:title>
 <dc:creator>Eric J. Miller</dc:creator>
 <dc:description>The Resource Description Framework (RDF) is an
 infrastructure that enables the encoding, exchange and reuse of
 structured metadata. rdf is an application of xml that imposes needed
 structural constraints to provide unambiguous methods of expressing

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

48 di 68 05/04/2008 18.46

 semantics. rdf additionally provides a means for publishing both
 human-readable and machine-processable vocabularies designed to
 encourage the reuse and extension of metadata semantics among
 disparate information communities. the structural constraints rdf
 imposes to support the consistent encoding and exchange of
 standardized metadata provides for the interchangeability of separate
 packages of metadata defined by different resource description
 communities. </dc:description>
 <dc:publisher>Corporation for National Research Initiatives</dc:publisher>
 <dc:subject>
 <rdf:Bag>
 <rdf:li>machine-readable catalog record formats</rdf:li>
 <rdf:li>applications of computer file organization and
 access methods</rdf:li>
 </rdf:Bag>
 </dc:subject>
 <dc:rights>Copyright Â© 1998 Eric Miller</dc:rights>
 <dc:type>Electronic Document</dc:type>
 <dc:format>text/html</dc:format>
 <dc:language>en</dc:language>
 <dcterms:isPartOf rdf:resource="http://www.dlib.org/dlib/may98/05contents.html"/>
 </rdf:Description>
</rdf:RDF>

Example 32 also uses the qualifier isPartOf, this time to indicate that this article is "part of" the
previously-described magazine.

Computer languages and file formats do not always make explicit provision for embedding metadata with the
data it describes. In many cases, the metadata has to be specified as a separate resource and explicitly linked
to the data (this has been done for the RDF metadata that describes the Primer; there is an explicit link to this
metadata at the end of the Primer). However, applications and languages are increasingly making explicit
provision for embedding metadata directly with the data. For example, the W3C's Scalable Vector Graphics
language [SVG] (another XML-based language) provides an explicit metadata element for recording metadata
along with other SVG data. Any XML-based metadata language can be used inside this element. [SVG]
includes the example shown in Example 33 of how to embed metadata describing an SVG document in the
SVG document itself. The example uses the Dublin Core vocabulary, and RDF/XML for recording the
metadata.

Example 33: Including Metadata in an SVG Document
<?xml version="1.0"?>
<svg width="4in" height="3in" version="1.1"
 xmlns = 'http://www.w3.org/2000/svg'>
 <desc xmlns:myfoo="http://example.org/myfoo">
 <myfoo:title>This is a financial report</myfoo:title>
 <myfoo:descr>The global description uses markup from the
 <myfoo:emph>myfoo</myfoo:emph> namespace.</myfoo:descr>
 <myfoo:scene><myfoo:what>widget $growth</myfoo:what>
 <myfoo:contains>$three $graph-bar</myfoo:contains>
 <myfoo:when>1998 $through 2000</myfoo:when> </myfoo:scene>
 </desc>
 <metadata>
 <rdf:RDF
 xmlns:rdf = "http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs = "http://www.w3.org/2000/01/rdf-schema#"
 xmlns:dc = "http://purl.org/dc/elements/1.1/" >
 <rdf:Description rdf:about="http://example.org/myfoo"
 dc:title="MyFoo Financial Report"
 dc:description="$three $bar $thousands $dollars $from 1998 $through 2000"
 dc:publisher="Example Organization"
 dc:date="2000-04-11"
 dc:format="image/svg+xml"
 dc:language="en" >
 <dc:creator>
 <rdf:Bag>
 <rdf:li>Irving Bird</rdf:li>
 <rdf:li>Mary Lambert</rdf:li>
 </rdf:Bag>
 </dc:creator>
 </rdf:Description>
 </rdf:RDF>
 </metadata>
</svg>

Adobe's Extensible Metadata Platform (XMP) is another example of technology that allows metadata about a
file to be embedded into the file itself. XMP uses RDF/XML as the basis of its metadata representation. A
number of Adobe products already support XMP.

6.2 PRISM

PRISM: Publishing Requirements for Industry Standard Metadata [PRISM] is a metadata specification

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

49 di 68 05/04/2008 18.46

developed in the publishing industry. Magazine publishers and their vendors formed the PRISM Working
Group to identify the industry's needs for metadata and define a specification to meet them. Publishers want to
use existing content in many ways in order to get a greater return on the investment made in creating it.
Converting magazine articles to HTML for posting on the Web is one example. Licensing it to aggregators like
LexisNexis
is another. All of these are "first uses" of the content; typically they all go live at the time the magazine hits the
stands. The publishers also want their content to be "evergreen". It might be used in new issues, such as in a
retrospective article. It could be used by other divisions in the company, such as in a book compiled from the
magazine's photos, recipes, etc. Another use is to license it to outsiders, such as in a reprint of a product
review, or in a retrospective produced by a different publisher. This overall goal requires a metadata approach
that emphasizes discovery, rights tracking, and end-to-end metadata.

Discovery:
Discovery is a general term for finding content which encompasses searching, browsing, content routing, and
other techniques. Discussions of discovery frequently center on a consumer searching a public Web site.
However, discovering content is much broader than that. The audience may consist of consumers, or it may
consist of internal users such as researchers, designers, photo editors, licensing agents, etc. To assist
discovery, PRISM provides properties to describe the topics, formats, genre, origin, and contexts of a resource.
It also provides means for categorizing resources using multiple subject description taxonomies.

Rights Tracking:
Magazines frequently contain material licensed from others. Photos from a stock photo agency are the most
common type of licensed material, but articles, sidebars, and all other types of content may be licensed. Simply
knowing if content was licensed for one-time use, requires royalty payments, or is wholly-owned by the
publisher is a struggle. PRISM provides elements for basic tracking of such rights. A separate vocabulary
defined in the PRISM specification supports description of places, times, and industries where content may or
may not be used.

End-to-end metadata:
Most published content already has metadata created for it. Unfortunately, when content moves between
systems, the metadata is frequently discarded, only to be re-created later in the production process at
considerable expense. PRISM aims to reduce this problem by providing a specification that can be used in
multiple stages in the content production pipeline. An important feature of the PRISM specification is its use of
other existing specifications. Rather than create an entirely new thing, the group decided to use existing
specifications as much as possible, and only define new things where needed. For this reason, the PRISM
specification uses XML, RDF, Dublin Core, and well as various ISO formats and vocabularies.

A PRISM description may be as simple as a few Dublin Core properties with plain literal values. Example 34
describes a photograph, giving basic information on its title, photographer, format, etc.

Example 34: A PRISM Description of a Photograph
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xml:lang="en-US">

 <rdf:Description rdf:about="http://travel.example.com/2000/08/Corfu.jpg">
 <dc:title>Walking on the Beach in Corfu</dc:title>
 <dc:description>Photograph taken at 6:00 am on Corfu with two models
 </dc:description>
 <dc:creator>John Peterson</dc:creator>
 <dc:contributor>Sally Smith, lighting</dc:contributor>
 <dc:format>image/jpeg</dc:format>
 </rdf:Description>
</rdf:RDF>

PRISM also augments the Dublin Core to allow more detailed descriptions. The augmentations are defined as
three new vocabularies, generally cited using the prefixes prism:, pcv:, and prl:.

prism: This prefix refers to the main PRISM vocabulary, whose terms use the URI prefix
http://prismstandard.org/namespaces/basic/1.0/. Most of the properties in this vocabulary are more specific
versions of properties from the Dublin Core. For example, more specific versions of dc:date are provided by
properties like prism:publicationTime, prism:releaseTime, prism:expirationTime, etc.

pcv: This prefix refers to the PRISM Controlled Vocabulary (pcv) vocabulary, whose terms use the URI prefix
http://prismstandard.org/namespaces/pcv/1.0/. Currently, common practice for describing the subject(s) of
an article is by supplying descriptive keywords. Unfortunately, simple keywords do not make a great difference
in retrieval performance, due to the fact that different people will use different keywords [BATES96]. Best
practice is to code the articles with subject terms from a "controlled vocabulary". The vocabulary should
provide as many synonyms as possible for its terms in the vocabulary. This way the controlled terms provide a
meeting ground for the keywords supplied by the searcher and the indexer. The pcv vocabulary provides
properties for specifying terms in a vocabulary, the relations between terms, and alternate names for the terms.

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

50 di 68 05/04/2008 18.46

prl: This prefix refers to the PRISM Rights Language vocabulary, whose terms use the URI prefix
http://prismstandard.org/namespaces/prl/1.0/. Digital Rights Management is an area undergoing
considerable upheaval. There are a number of proposals for rights management languages, but none are
clearly favored throughout the industry. Because there was no clear choice to recommend, the PRISM Rights
Language (PRL) was defined as an interim measure. It provides properties which let people say if an item can
or cannot be "used", depending on conditions of time, geography, and industry. This is believed to be an 80/20
trade-off which will help publishers begin to save money when tracking rights. It is not intended to be a general
rights language, or allow publishers to automatically enforce limits on consumer uses of the content.

PRISM uses RDF because of its abilities for dealing with descriptions of varying complexity. Currently, a great
deal of metadata uses simple character string (plain literal) values, such as:

<dc:coverage>Greece</dc:coverage>

Over time the developers of PRISM expect uses of the PRISM specification to become more sophisticated,
moving from simple literal values to more structured values. In fact, that range of values is a situation being
faced now. Some publishers already use sophisticated controlled vocabularies, others are barely using
manually-supplied keywords. To illustrate this, some examples of the different kinds of values that can be given
for the dc:coverage property are:

<dc:coverage>Greece</dc:coverage>

<dc:coverage rdf:resource="http://prismstandard.org/vocabs/ISO-3166/GR"/>

(i.e., using either a plain literal or a URIref to identify the country) and

<dc:coverage>
 <pcv:Descriptor rdf:about="http://prismstandard.org/vocabs/ISO-3166/GR">
 <pcv:label xml:lang="en">Greece</pcv:label>
 <pcv:label xml:lang="fr">GrÃ¨ce</pcv:label>
 </pcv:Descriptor>
</dc:coverage>

(using a structured value to provide both a URIref and names in various languages).

Note also that there are properties whose meanings are similar, or subsets of other properties. For example,
the geographic subject of a resource could be given with

<prism:subject>Greece</prism:subject>
<dc:coverage>Greece</dc:coverage>

or

<prism:location>Greece</prism:location>

Any of those properties might use the simple literal value, or a more complex structured value. Such a range of
possibilities cannot be adequately described by DTDs, or even by the newer XML Schemas. While there is a
wide range of syntactic variations to deal with, RDF's graph model has a simple structure - a set of triples.
Dealing with the metadata in the triples domain makes it much easier for older software to accommodate
content with new extensions.

This section closes with two final examples. Example 35 says that the image (.../Corfu.jpg) cannot be used
(#none) in the tobacco industry (code 21 in SIC, the Standard Industrial Classifications).

Example 35: A PRISM Description of an Image
<rdf:RDF xmlns:prism="http://prismstandard.org/namespaces/basic/1.0/"
 xmlns:prl="http://prismstandard.org/namespaces/prl/1.0/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:dc="http://purl.org/dc/elements/1.1/">

 <rdf:Description rdf:about="http://travel.example.com/2000/08/Corfu.jpg">
 <dc:rights rdf:parseType="Resource"
 xml:base="http://prismstandard.org/vocabularies/1.0/usage.xml">
 <prl:usage rdf:resource="#none"/>
 <prl:industry rdf:resource="http://prismstandard.org/vocabs/SIC/21"/>
 </dc:rights>
 </rdf:Description>
</rdf:RDF>

Example 36
says that the photographer for the Corfu image was employee 3845, better known as John Peterson. It also
says that the geographic coverage of the photo is Greece. It does so by providing, not just a code from a
controlled vocabulary, but a cached version of the information for that term in the vocabulary.

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

51 di 68 05/04/2008 18.46

Example 36: Additional Information about the Image from Example 35
<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:pcv="http://prismstandard.org/namespaces/pcv/1.0/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xml:base="http://travel.example.com/">

 <rdf:Description rdf:about="/2000/08/Corfu.jpg">
 <dc:identifier rdf:resource="/content/2357845" />
 <dc:creator>
 <pcv:Descriptor rdf:about="/emp3845">
 <pcv:label>John Peterson</pcv:label>
 </pcv:Descriptor>
 </dc:creator>
 <dc:coverage>
 <pcv:Descriptor
 rdf:about="http://prismstandard.org/vocabs/ISO-3166/GR">
 <pcv:label xml:lang="en">Greece</pcv:label>
 <pcv:label xml:lang="fr">Grece</pcv:label>
 </pcv:Descriptor>
 </dc:coverage>
 </rdf:Description>
</rdf:RDF>

6.3 XPackage

Many situations involve the need to maintain information about structured groupings of resources and their
associations that are, or may be, used as a unit. The XML Package (XPackage) specification [XPACKAGE]
provides a framework for defining such groupings, called packages. XPackage specifies a framework for
describing the resources included in such packages, the properties of those resources, their method of
inclusion, and their relationships with each other. XPackage applications include specifying the style sheets
used by a document, declaring the images shared by multiple documents, indicating the author and other
metadata of a document, describing how namespaces are used by XML resources, and providing a manifest
for bundling resources into a single archive file.

The XPackage framework is based upon XML, RDF, and the XML Linking Language [XLINK], and provides
multiple RDF vocabularies: one for general packaging descriptions, and several other vocabularies for
providing supplemental resource information useful to package processors.

One application of XPackage is the description of XHTML documents and their supporting resources. An
XHTML document retrieved from a Web site may rely on other resources such as style sheets and image files
that also need to be retrieved. However, the identities of these supporting resources may not be obvious
without processing the entire document. Other information about the document, such as the name of its author,
may also not be available without processing the document. XPackage allows such descriptive information to
be stored in a standard way in a package description document containing RDF. The outer elements of a
package description document describing such an XHTML document might look like Example 37 (with
namespace declarations removed for simplicity):

Example 37: Outer Elements of an XPackage Package Description Document
<?xml version="1.0"?>
<xpackage:description>
 <rdf:RDF>

 (description of individual resources go here)

 </rdf:RDF>
</xpackage:description>

Resources (such as the XHTML document, style sheets, and images) are described within this package
description document using standard RDF/XML syntax. Each resource description element may include RDF
properties from various vocabularies (XPackage uses the term "ontology" for what RDF calls a "vocabulary").
Besides the main packaging vocabulary, XPackage itself specifies several supplemental vocabularies,
including:

a vocabulary (using prefix file:) for describing files (with properties such as file:size)
a vocabulary (using prefix mime:) for providing MIME information (with properties such as
mime:contentType)
a vocabulary (using prefix unicode:) for providing character usage information (with properties such as
unicode:script)
a vocabulary (using prefix x:) for describing XML-based resources (with properties such as x:namespace
and x:style)

In Example 38, the document's MIME content type ("application/xhtml+xml") is defined using a standard
XPackage property from the XPackage MIME vocabulary, mime:contentType. Another property, the document's

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

52 di 68 05/04/2008 18.46

author (in this case, "Garret Wilson"), is described using a property from the Dublin Core vocabulary, defined
outside of XPackage, resulting in a dc:creator property.

Example 38: A Description of an XHTML Document
<?xml version="1.0"?>
<xpackage:description
 xmlns:xpackage="http://xpackage.org/namespaces/2003/xpackage#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:mime="http://xpackage.org/namespaces/2003/mime#"
 xmlns:x="http://xpackage.org/namespaces/2003/xml#"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <rdf:RDF>

 <!--doc.html-->
 <rdf:Description rdf:about="urn:example:xhtmldocument-doc">
 <rdfs:comment>The XHTML document.</rdfs:comment>
 <xpackage:location xlink:href="doc.html"/>
 <mime:contentType>application/xhtml+xml</mime:contentType>
 <x:namespace rdf:resource="http://www.w3.org/1999/xhtml"/>
 <x:style rdf:resource="urn:example:xhtmldocument-stylesheet"/>
 <dc:creator>Garret Wilson</dc:creator>
 <xpackage:manifest rdf:parseType="Collection">
 <rdf:Description rdf:about="urn:example:xhtmldocument-stylesheet"/>
 <rdf:Description rdf:about="urn:example:xhtmldocument-image"/>
 </xpackage:manifest>
 </rdf:Description>

 </rdf:RDF>
</xpackage:description>

The xpackage:manifest
property indicates that both the style sheet and image resources are necessary for processing; those
resources are described separately within the package description document. The example style sheet
resource description in Example 39
lists its location within the package ("stylesheet.css") using the general XPackage vocabulary
xpackage:location
property (which is compatible with XLink), and shows through use of the XPackage MIME vocabulary
mime:contentType property that it is a CSS style sheet ("text/css").

Example 39: A Style Sheet Resource Description
<?xml version="1.0"?>
<xpackage:description
 xmlns:xpackage="http://xpackage.org/namespaces/2003/xpackage#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:mime="http://xpackage.org/namespaces/2003/mime#"
 xmlns:x="http://xpackage.org/namespaces/2003/xml#"
 xmlns:xlink="http://www.w3.org/1999/xlink">
 <rdf:RDF>

 <!--stylesheet.css-->
 <rdf:Description rdf:about="urn:example:xhtmldocument-css">
 <rdfs:comment>The document style sheet.</rdfs:comment>
 <xpackage:location xlink:href="stylesheet.css"/>
 <mime:contentType>text/css</mime:contentType>
 </rdf:Description>

 </rdf:RDF>
</xpackage:description>

The full version of this example may be found in [XPACKAGE].

6.4 RSS 1.0: RDF Site Summary

People sometimes need to access a wide variety of information on the Web on a day-to-day basis, such as
schedules, to-do lists, news headlines, search results, "What's New", etc. As the sources and diversity of the
information on the Web increases, it becomes increasingly difficult to manage this information and integrate it
into a coherent whole. RSS 1.0
("RDF Site Summary") is an RDF vocabulary that provides a lightweight, yet powerful way of describing
information for timely, large-scale distribution and reuse. RSS 1.0 is also perhaps the most widely deployed
RDF application on the Web.

To give a simple example, the W3C home page is a primary point of contact with the public and serves in part
to disseminate information about the deliverables of the Consortium. An example of the W3C home page as of
a certain date is shown in Figure 19. The center column of news items changes frequently. To support the

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

53 di 68 05/04/2008 18.46

timely dissemination of this information, the W3C Team has implemented an RDF Site Summary (RSS 1.0)
news feed that makes the content in the center column available to others to reuse as they will. News
syndication sites may merge the headlines into a summary of the day's latest news, others may display the
headlines as links as a service to their readers, and, increasingly, individuals may subscribe to this feed with a
desktop application. These desktop RSS readers allow their users to keep track of potentially hundreds of
sites, without having to visit each one in their browser.

Figure 19: The W3C Home Page

Numerous sites all over the Web provide RSS 1.0 feeds. Example 40 is an example of the W3C feed (from a
different date):

Example 40: An Example of the W3C RSS 1.0 Feed
<?xml version="1.0" encoding="utf-8"?>

<rdf:RDF xmlns="http://purl.org/rss/1.0/"
 xmlns:dc="http://purl.org/dc/elements/1.1/"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">

 <channel rdf:about="http://www.w3.org/2000/08/w3c-synd/home.rss">
 <title>The World Wide Web Consortium</title>
 <description>Leading the Web to its Full Potential...</description>
 <link>http://www.w3.org/</link>

 <dc:date>2002-10-28T08:07:21Z</dc:date>

 <items>
 <rdf:Seq>
 <rdf:li rdf:resource="http://www.w3.org/News/2002#item164"/>
 <rdf:li rdf:resource="http://www.w3.org/News/2002#item168"/>
 <rdf:li rdf:resource="http://www.w3.org/News/2002#item167"/>
 </rdf:Seq>
 </items>

 </channel>

 <item rdf:about="http://www.w3.org/News/2002#item164">
 <title>User Agent Accessibility Guidelines Become a W3C
 Proposed Recommendation</title>
 <description>17 October 2002: W3C is pleased to announce the
 advancement of User Agent Accessibility Guidelines 1.0 to
 Proposed Recommendation. Comments are welcome through 14 November.
 Written for developers of user agents, the guidelines lower
 barriers to Web accessibility for people with disabilities
 (visual, hearing, physical, cognitive, and neurological).
 The companion Techniques Working Draft is updated. Read about
 the Web Accessibility Initiative. (News archive)</description>
 <link>http://www.w3.org/News/2002#item164</link>
 <dc:date>2002-10-17</dc:date>
 </item>

 <item rdf:about="http://www.w3.org/News/2002#item168">
 <title>Working Draft of Authoring Challenges for Device
 Independence Published</title>
 <description>25 October 2002: The Device Independence
 Working Group has released the first public Working Draft of
 Authoring Challenges for Device Independence. The draft describes
 the considerations that Web authors face in supporting access to
 their sites from a variety of different devices. It is written
 for authors, language developers, device experts and developers

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

54 di 68 05/04/2008 18.46

 of Web applications and authoring systems. Read about the Device
 Independence Activity (News archive)</description>
 <link>http://www.w3.org/News/2002#item168</link>
 <dc:date>2002-10-25</dc:date>
 </item>

 <item rdf:about="http://www.w3.org/News/2002#item167">
 <title>CSS3 Last Call Working Drafts Published</title>
 <description>24 October 2002: The CSS Working Group has
 released two Last Call Working Drafts and welcomes comments
 on them through 27 November. CSS3 module: text is a set of
 text formatting properties and addresses international contexts.
 CSS3 module: Ruby is properties for ruby, a short run of text
 alongside base text typically used in East Asia. CSS3 module:
 The box model for the layout of textual documents in visual
 media is also updated. Cascading Style Sheets (CSS) is a
 language used to render structured documents like HTML and
 XML on screen, on paper, and in speech. Visit the CSS home
 page. (News archive)</description>
 <link>http://www.w3.org/News/2002#item167</link>
 <dc:date>2002-10-24</dc:date>
 </item>

</rdf:RDF>

As Example 40
shows, the format is designed for content that can be packaged into easily distinguishable sections. News
sites, Web logs, sports scores, stock quotes, and the like are all use-cases for RSS 1.0.

The RSS feed can be requested by any application able to "speak" HTTP. More recently, however, RSS 1.0
applications are splitting into three different categories:

On-line aggregators - Sites such as Meerkat and NewsIsFree, shown side-by-side in Figure 20 (each
mirroring W3C's column of news). These gather feeds from thousands of sources, separate each of the
<item>s out, and add them together again into one large group. The whole group is then made
searchable. In this way, one can search for the latest news on, for example, "Java" from perhaps
thousands of sites, without having to search them all.
Desktop Readers - Utilities such as Amphetadesk and NetNewsWire Lite allow their users to subscribe to
hundreds of feeds from their desktop. Readers customarily refresh each feed once an hour, allowing
users to stay up to date.
Scripts - RSS's original purpose was to allow Webmasters to include the content of another's site within
their own. RSS 1.0 is still used in this way, with many sites (Slashdot for example) incorporating RSS
feeds on their front page.

Figure 20: MeerKat and NewsIsFree

RSS 1.0 is extensible by design. By importing additional RDF vocabularies (or modules as they are known
within the RSS development community), the RSS 1.0 author can provide large amounts of metadata and
handling instructions to the recipient of the file. Modules can, as with more general RDF vocabularies, be
written by anyone. Currently there are 3 official modules and 19 proposed modules readily recognized by the
community at large. These modules range from the complete Dublin Core module to more specialized
RSS-centric modules such as the Aggregation module.

Care should be taken when discussing "RSS" in the scope of RDF. There are currently two RSS specification
strands. One strand (RSS 0.91,0.92,0.93,0.94 and 2.0) does not use RDF. The other strand (RSS 0.9 and 1.0)
does.

6.5 CIM/XML

Electric utilities use power system models for a number of different purposes. For example, simulations of
power systems are necessary for planning and security analysis. Power system models are also used in actual
operations, e.g., by the Energy Management Systems (EMS) used in energy control centers. An operational
power system model can consist of thousands of classes of information. In addition to using these models

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

55 di 68 05/04/2008 18.46

in-house, utilities need to exchange system modeling information, both in planning, and for operational
purposes, e.g., for coordinating transmission and ensuring reliable operations. However, individual utilities use
different software for these purposes, and as a result the system models are stored in different formats, making
the exchange of these models difficult.

In order to support the exchange of power system models, utilities needed to agree on common definitions of
power system entities and relationships. To support this, the Electric Power Research Institute (EPRI) a
non-profit energy research consortium, developed a Common Information Model (CIM) [CIM]. The CIM
specifies common semantics for power system resources, their attributes, and relationships. In addition, to
further support the ability to electronically exchange CIM models, the power industry has developed CIM/XML,
a language for expressing CIM models in XML. CIM/XML is an RDF application, using RDF and RDF Schema
to organize its XML structures. The North American Electric Reliability Council (NERC) (an industry-supported
organization formed to promote the reliability of electricity delivery in North America) has adopted CIM/XML as
the standard for exchanging models between power transmission system operators. The CIM/XML format is
also going through an IEC international standardization process. An excellent discussion of CIM/XML can be
found in [DWZ01]. [NB: This power industry CIM should not be confused with the CIM developed by the
Distributed Management Task Force
for representing management information for distributed software, network, and enterprise environments. The
DMTF CIM also has an XML representation, but does not currently use RDF, although independent research is
underway in that direction.]

The CIM can represent all of the major objects of an electric utility as object classes and attributes, as well as
their relationships. CIM uses these object classes and attributes to support the integration of independently
developed applications between vendor specific EMS systems, or between an EMS system and other systems
that are concerned with different aspects of power system operations, such as generation or distribution
management.

The CIM is specified as a set of class diagrams using the Unified Modeling Language (UML). The base class of
the CIM is the PowerSystemResource class, with other more specialized classes such as Substation, Switch, and
Breaker
being defined as subclasses. CIM/XML represents the CIM as an RDF Schema vocabulary, and uses
RDF/XML as the language for exchanging specific system models. Example 41 shows examples of CIM/XML
class and property definitions:

Example 41: Examples of CIM/XML Class and Property Definitions
<rdfs:Class rdf:ID="PowerSystemResource">
 <rdfs:label xml:lang="en">PowerSystemResource</rdfs:label>
 <rdfs:comment>"A power system component that can be either an
 individual element such as a switch or a set of elements
 such as a substation. PowerSystemResources that are sets
 could be members of other sets. For example a Switch is a
 member of a Substation and a Substation could be a member
 of a division of a Company"</rdfs:comment>
</rdfs:Class>

<rdfs:Class rdf:ID="Breaker">
 <rdfs:label xml:lang="en">Breaker</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Switch" />
 <rdfs:comment>"A mechanical switching device capable of making,
 carrying, and breaking currents under normal circuit conditions
 and also making, carrying for a specified time, and breaking
 currents under specified abnormal circuit conditions e.g. those
 of short circuit. The typeName is the type of breaker, e.g.,
 oil, air blast, vacuum, SF6."</rdfs:comment>
</rdfs:Class>

<rdf:Property rdf:ID="Breaker.ampRating">
 <rdfs:label xml:lang="en">ampRating</rdfs:label>
 <rdfs:domain rdf:resource="#Breaker" />
 <rdfs:range rdf:resource="#CurrentFlow" />
 <rdfs:comment>"Fault interrupting rating in amperes"</rdfs:comment>
</rdf:Property>

CIM/XML uses only a subset of the complete RDF/XML syntax, in order to simplify expressing the models. In
addition, CIM/XML implements some extensions to the RDF Schema vocabulary. These extensions support
the description of inverse roles and multiplicity (cardinality) constraints describing how many instances of a
given property are allowed for a given resource (allowable values for a multiplicity declaration are zero-or-one,
exactly-one, zero-or-more, one-or-more). The properties in Example 42 illustrate these extensions (which are
identified by a cims: QName prefix):

Example 42: Some CIM/XML Extensions of RDF Schema
<rdf:Property rdf:ID="Breaker.OperatedBy">
 <rdfs:label xml:lang="en">OperatedBy</rdfs:label>
 <rdfs:domain rdf:resource="#Breaker" />
 <rdfs:range rdf:resource="#ProtectionEquipment" />

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

56 di 68 05/04/2008 18.46

 <cims:inverseRoleName rdf:resource="#ProtectionEquipment.Operates" />
 <cims:multiplicity rdf:resource="http://www.cim-logic.com/schema/990530#M:0..n" />
 <rdfs:comment>"Circuit breakers may be operated by
 protection relays."</rdfs:comment>
</rdf:Property>

<rdf:Property rdf:ID="ProtectionEquipment.Operates">
 <rdfs:label xml:lang="en">Operates</rdfs:label>
 <rdfs:domain rdf:resource="#ProtectionEquipment" />
 <rdfs:range rdf:resource="#Breaker" />
 <cims:inverseRoleName rdf:resource="#Breaker.OperatedBy" />
 <cims:multiplicity rdf:resource="http://www.cim-logic.com/schema/990530#M:0..n" />
 <rdfs:comment>"Circuit breakers may be operated by
 protection relays."</rdfs:comment>
</rdf:Property>

EPRI has conducted successful interoperability tests using CIM/XML to exchange real-life, large-scale models
(involving, in the case of one test, data describing over 2000 substations) between a variety of vendor
products, and validating that these models would be correctly interpreted by typical utility applications.
Although the CIM was originally intended for EMS systems, it is also being extended to support power
distribution and other applications as well.

The Object Management Group
has adopted an object interface standard to access CIM power system models called the Data Access Facility
[DAF]. Like the CIM/XML language, the DAF is based on the RDF model and shares the same CIM schema.
However, while CIM/XML enables a model to be exchanged as a document, DAF enables an application to
access the model as a set of objects.

CIM/XML illustrates the useful role RDF can play in supporting XML-based exchange of information that is
naturally expressed as entity-relationship or object-oriented classes, attributes, and relationships (even when
that information will not necessarily be Web-accessible). In these cases, RDF provides a basic structure for the
XML in support of identifying objects, and using them in structured relationships. This connection is illustrated
by a number of applications using RDF/XML for information interchange, as well as a number of projects
investigating linkages between RDF (or ontology languages such as OWL) and UML (and its XML
representations). CIM/XML's need to extend RDF Schema to support cardinality constraints and inverse
relationships also illustrates the kinds of requirements that have led to the development of more powerful
RDF-based schema/ontology languages such as DAML+OIL and OWL described in Section 5.5. Such
languages may be appropriate in supporting many similar modeling applications in the future.

Finally, CIM/XML also illustrates an important fact for those looking for additional examples of "RDF in the
Field": sometimes languages are described as "XML" languages, or systems are described as using "XML",
and the "XML" they are actually using is RDF/XML, i.e., they are RDF applications. Sometimes it is necessary
to go fairly far into the description of the language or system in order to find this out (in some examples that
have been found, RDF is never explicitly mentioned at all, but sample data clearly shows it is RDF/XML).
Moreover, in applications such as CIM/XML, the RDF that is created will not be readily found on the Web, since
it is intended for information exchange between software components rather than for general access (although
future scenarios could be imagined in which more of this type of RDF would become Web-accessible).

6.6 Gene Ontology Consortium

Structured metadata using controlled vocabularies such as SNOMED RT (Systematized Nomenclature of
Medicine Reference Terminology) and MeSH (Medical Subject Headings) plays an important role in medicine,
enabling more efficient literature searches and aiding in the distribution and exchange of medical knowledge
[COWAN]. At the same time, the field of medicine is rapidly changing, and with that comes the need to develop
additional vocabularies.

The objective of the Gene Ontology (GO) Consortium [GO] is to provide controlled vocabularies to describe
specific aspects of gene products. Collaborating databases annotate their gene products (or genes) with GO
terms, providing references and indicating what kind of evidence is available to support the annotations. The
use of common GO terms by these databases facilitates uniform queries across them. The GO ontologies are
structured to allow both attribution and querying to be performed at different levels of granularity. The GO
vocabularies are dynamic, since knowledge of gene and protein roles in cells is accumulating and changing.

The three organizing principles of the GO are molecular function, biological process, and cellular component. A
gene product has one or more molecular functions and is used in one or more biological processes; it may be,
or may be associated with, one or more cellular components. Definitions of the terms within all three of these
ontologies are contained in a single (text) definition file. XML formatted versions, containing all three ontology
files and all available definitions, are generated monthly.

Function, process and component are represented as directed acyclic graphs (DAGs) or networks. A child term
may be an "instance" of its parent term (isa relationship) or a component of its parent term (part-of
relationship). A child term may have more than one parent term and may have a different class of relationship

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

57 di 68 05/04/2008 18.46

with its different parents. Synonyms and cross-references to external databases are also represented in the
ontologies.
GO uses RDF/XML facilities to represent the relationships between terms in the XML versions of the
ontologies, because of its flexibility in representing these graph structures, as well as its widespread tool
support. At the same time, GO currently uses non-RDF nested XML structures within the term descriptions, so
the language used is not pure RDF/XML.

Example 43 shows some sample GO information from the GO documentation:

Example 43: Sample GO Information
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE go:go>
<go:go xmlns:go="http://www.geneontology.org/xml-dtd/go.dtd#"
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <go:version timestamp="Wed May 9 23:55:02 2001" />

 <rdf:RDF>
 <go:term rdf:about="http://www.geneontology.org/go#GO:0003673">
 <go:accession>GO:0003673</go:accession>
 <go:name>Gene_Ontology</go:name>
 <go:definition></go:definition>
 </go:term>

 <go:term rdf:about="http://www.geneontology.org/go#GO:0003674">
 <go:accession>GO:0003674</go:accession>
 <go:name>molecular_function</go:name>
 <go:definition>The action characteristic of a gene product.</go:definition>
 <go:part-of rdf:resource="http://www.geneontology.org/go#GO:0003673" />
 <go:dbxref>
 <go:database_symbol>go</go:database_symbol>
 <go:reference>curators</go:reference>
 </go:dbxref>
 </go:term>

 <go:term rdf:about="http://www.geneontology.org/go#GO:0016209">
 <go:accession>GO:0016209</go:accession>
 <go:name>antioxidant</go:name>
 <go:definition></go:definition>
 <go:isa rdf:resource="http://www.geneontology.org/go#GO:0003674" />
 <go:association>
 <go:evidence evidence_code="ISS">
 <go:dbxref>
 <go:database_symbol>fb</go:database_symbol>
 <go:reference>fbrf0105495</go:reference>
 </go:dbxref>
 </go:evidence>
 <go:gene_product>
 <go:name>CG7217</go:name>
 <go:dbxref>
 <go:database_symbol>fb</go:database_symbol>
 <go:reference>FBgn0038570</go:reference>
 </go:dbxref>
 </go:gene_product>
 </go:association>
 <go:association>
 <go:evidence evidence_code="ISS">
 <go:dbxref>
 <go:database_symbol>fb</go:database_symbol>
 <go:reference>fbrf0105495</go:reference>
 </go:dbxref>
 </go:evidence>
 <go:gene_product>
 <go:name>Jafrac1</go:name>
 <go:dbxref>
 <go:database_symbol>fb</go:database_symbol>
 <go:reference>FBgn0040309</go:reference>
 </go:dbxref>
 </go:gene_product>
 </go:association>
 </go:term>
 </rdf:RDF>
</go:go>

Example 43 illustrates that go:term
is the basic element. In some cases, the GO has defined its own terms rather than using RDF Schema. For
example, term GO:0016209 has the element <go:isa
rdf:resource="http://www.geneontology.org/go#GO:0003674" />. This tag represents the relationship
"GO:0016209 isa GO:0003674", or, in English, "Antioxidant is a molecular function." Another specialized
relationship is go:part-of. For example, GO:0003674 has the element <go:part-of
rdf:resource="http://www.geneontology.org/go#GO:0003673" />. This says that "Molecular function is part of
the Gene Ontology".

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

58 di 68 05/04/2008 18.46

Every annotation must be attributed to a source, which may be a literature reference, another database or a
computational analysis. The annotation must indicate what kind of evidence is found in the cited source to
support the association between the gene product and the GO term. A simple controlled vocabulary is used to
record evidence. Examples include:

ISS means "inferred from sequence similarity [with <database:sequence_id>]"
IDA means "inferred from direct assay"
TAS means "traceable author statement"

The go:dbxref element represents the term in an external database, and go:association represents the gene
associations of each term. go:association can have both go:evidence, which holds a go:dbxref to the
evidence supporting the association, and a go:gene_product, which contains the gene symbol and go:dbxref.
These elements illustrate that the GO XML syntax is not "pure" RDF/XML, since the nesting of other elements
within these elements does not conform to the alternate node/predicate arc "stripes" described in Sections 2.1
and 2.2 of [RDF-SYNTAX].

The GO illustrates a number of interesting points. First, it shows that the value of using XML for information
exchange can be enhanced by structuring that XML using RDF. This is particularly true for data that has an
overall graph or network structure, rather than being a strict hierarchy. The GO is also another example in
which data using RDF will not necessarily appear for direct use on the Web (although the files are
Web-accessible). It is also another example of data which is, on the surface, described as "XML", but on closer
examination uses RDF/XML facilities (albeit not "pure" RDF/XML). Finally, the GO illustrates the role RDF can
play as a basis for representing ontologies. This role will be further enhanced once richer RDF-based
languages for specifying ontologies, such as the DAML+OIL or OWL languages discussed in Section 5.5,
become more widely used. In fact, a Gene Ontology Next Generation project is currently developing a
representation of the GO ontologies in these richer languages.

6.7 Describing Device Capabilities and User Preferences

In recent years a large number of new mobile devices for browsing the Web have appeared. Many of these
devices have highly divergent capabilities including a wide range of input and output capabilities as well as
different levels of language support. Mobile devices may also have widely differing network connectivity
capabilities. Users of these new devices expect a usable presentation regardless of the device's capabilities or
the current network characteristics. Likewise, users want their dynamically changing preferences (e.g. turn
audio on/off) to be considered when content or an application is presented. The reality, however, is that device
heterogeneity, and the lack of a standard way for users to convey their preferences to the server, may result in:
content that cannot be stored on the device, content that cannot be displayed, or content that violates the
desires of the user. Additionally, the resulting content may take too long to convey over the network to the
client device.

A solution for addressing these problems is for a client to encode its delivery context - the device's capabilities,
the user's preferences, the network characteristics, etc. - in such a way that a server can use the context to
customize content for the device and user (see [DIPRINC] for a definition of delivery context). The W3C's
Composite Capabilities/Preferences Profile (CC/PP) specification [CC/PP] helps to address this problem by
defining a generic framework for describing a delivery context.

The CC/PP framework defines a relatively simple structure - a two-level hierarchy of components and
attribute/value pairs. A component
may be used to capture a part of a delivery context (e.g. network characteristics, software supported by a
device, or the hardware characteristics of a device). A component may contain one or more attributes. For
example a component that encodes user preferences may contain an attribute to specify whether or not
AudioOutput is desired.

CC/PP defines its structure (the hierarchy described above) using RDF Schema (see [CC/PP] for details of the
structure schema). A CC/PP vocabulary defines specific components and their attributes. [CC/PP], however,
does not define such vocabularies. Instead, vocabularies are defined by other organizations or applications (as
described below). [CC/PP] also does not define a protocol for transporting an instance of a CC/PP vocabulary.

An instance of a CC/PP vocabulary is called a profile. CC/PP attributes are encoded as RDF properties in a
profile. Example 44 shows a profile fragment of user preferences for a user that prefers an audio presentation:

Example 44: A CC/PP Profile Fragment
 <ccpp:component>
 <rdf:Description rdf:ID="UserPreferences">
 <rdf:type rdf:resource="http://www.example.org/profiles/prefs/v1_0#UserPreferences"/>
 <ex:AudioOutput>Yes</ex:AudioOutput>
 <ex:Graphics>No</ex:Graphics>
 <ex:Languages>
 <rdf:Seq>
 <rdf:li>en-cockney</rdf:li>

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

59 di 68 05/04/2008 18.46

 <rdf:li>en</rdf:li>
 </rdf:Seq>
 </ex:Languages>
 </rdf:Description>
 </ccpp:component>

There are several advantages to using RDF in this application. First, a profile encoded via CC/PP may include
attributes that were defined in schemas created by different organizations. RDF is a natural fit for these profiles
because no single organization is likely to create a super schema for the aggregated profile data. A second
advantage of RDF is that it facilitates (by virtue of its graph-based data model) the insertion of arbitrary
attributes (RDF properties) into a profile. This is particularly useful for profiles that include frequently changing
data such as location information.

The Open Mobile Alliance has defined the User Agent Profile (UAProf) [UAPROF] - a CC/PP-based framework
that includes a vocabulary for describing device capabilities, user agent capabilities, network characteristics,
etc., as well as a protocol for transporting a profile. UAProf defines six components including:
HardwarePlatform, SoftwarePlatform, NetworkCharacteristics and BrowserUA. It also defines several attributes
for each of its components although a component's attributes are not fixed - they may be supplemented or
overridden. Example 45 shows a fragment of UAProf's HardwarePlatform component:

Example 45: A Fragment of UAProf's HardwarePlatform Component
 <prf:component>
 <rdf:Description rdf:ID="HardwarePlatform">
 <rdf:type rdf:resource="http://www.openmobilealliance.org/profiles/UAPROF/ccppschema-20021113#Hardwa
 <prf:ScreenSizeChar>15x6</prf:ScreenSizeChar>
 <prf:BitsPerPixel>2</prf:BitsPerPixel>
 <prf:ColorCapable>No</prf:ColorCapable>
 <prf:BluetoothProfile>
 <rdf:Bag>
 <rdf:li>headset</rdf:li>
 <rdf:li>dialup</rdf:li>
 <rdf:li>lanaccess</rdf:li>
 </rdf:Bag>
 </prf:BluetoothProfile>
 </rdf:Description>
 </prf:component>

The UAProf protocol supports both static profiles and dynamic profiles. A static profile is accessed via a URI.
This has several advantages: a client's request to a server only contains a URI rather a potentially verbose
XML document (thus minimizing over the air traffic); the client does not have to store and/or create the profile;
the implementation burden on a client is relatively light-weight. Dynamic profiles are created on-the-fly and
consequently do not have an associated URI. They may consist of a profile fragment containing a difference
from a static profile, but they may also contain unique data that is not included in the client's static profile. A
request may contain any number of static profiles and dynamic profiles. However, the ordering of the profiles is
important as later profiles override earlier profiles in the request. See [UAPROF] for more information about
UAProf's protocol and its rules for resolving multiple profiles.

Several other communities (i.e. 3GPP's TS 26.234 [3GPP] and the WAP Forum's Multimedia Messaging
Service Client Transactions Specification [MMS-CTR]) have defined vocabularies based on CC/PP. As a
result, a profile may take advantage of the distributed nature of RDF and include components defined from
various vocabularies. Example 46 shows such a profile:

Example 46: A Profile Using Several Vocabularies
<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:prf="http://www.wapforum.org/profiles/UAPROF/ccppschema-20010330#"
 xmlns:mms="http://www.wapforum.org/profiles/MMS/ccppschema-20010111#"
 xmlns:pss="http://www.3gpp.org/profiles/PSS/ccppschema-YYYYMMDD#">

 <rdf:Description rdf:ID="SomeDevice">
 <prf:component>
 <rdf:Description rdf:ID="Streaming">
 <rdf:type rdf:resource="http://www.3gpp.org/profiles/PSS/ccppschema-PSS5#Streaming"/>
 <pss:AudioChannels>Stereo</pss:AudioChannels>
 <pss:VideoPreDecoderBufferSize>30720</pss:VideoPreDecoderBufferSize>
 <pss:VideoInitialPostDecoderBufferingPeriod>0</pss:VideoInitialPostDecoderBufferingPeriod>
 <pss:VideoDecodingByteRate>16000</pss:VideoDecodingByteRate>
 </rdf:Description>
 </prf:component>

 <prf:component>
 <rdf:Description rdf:ID="MmsCharacteristics">
 <rdf:type rdf:resource="http://www.wapforum.org/profiles/MMS/ccppschema-20010111#Streaming"/>
 <mms:MmsMaxMessageSize>2048</mms:MmsMaxMessageSize>
 <mms:MmsMaxImageResolution>80x60</mms:MmsMaxImageResolution>
 <mms:MmsVersion>2.0</mms:MmsVersion>
 </rdf:Description>
 </prf:component>

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

60 di 68 05/04/2008 18.46

 <prf:component>
 <rdf:Description rdf:ID="PushCharacteristics">
 <rdf:type rdf:resource="http://www.openmobilealliance.org/profiles/UAPROF/ccppschema-20010330#PushC
 <prf:Push-MsgSize>1024</prf:Push-MsgSize>
 <prf:Push-MaxPushReq>5</prf:Push-MaxPushReq>
 <prf:Push-Accept>
 <rdf:Bag>
 <rdf:li>text/html</rdf:li>
 <rdf:li>text/plain</rdf:li>
 <rdf:li>image/gif</rdf:li>
 </rdf:Bag>
 </prf:Push-Accept>
 </rdf:Description>
 </prf:component>

 </rdf:Description>
</rdf:RDF>

The definition of a delivery context and the data within a context will continually evolve. Consequently, RDF's
inherent extensibility, and thus support for dynamically changing vocabularies, make RDF a good framework
for encoding a delivery context.

7. Other Parts of the RDF Specification

Section 1 indicated that the RDF Specification consists of a number of documents (in addition to this Primer):

RDF Concepts and Abstract Syntax [RDF-CONCEPTS]
RDF/XML Syntax Specification [RDF-SYNTAX]
RDF Vocabulary Description Language 1.0: RDF Schema [RDF-VOCABULARY]
RDF Semantics [RDF-SEMANTICS]
RDF Test Cases [RDF-TESTS]

The Primer has already discussed the subjects of several of these documents, basic RDF concepts (in Section
2), the RDF/XML syntax (in Section 3) and RDF Schema (in Section 5). This section briefly describes the
remaining documents (even though there have already been numerous references to [RDF-SEMANTICS] as
well), in order to explain their role in the complete specification of RDF.

7.1 RDF Semantics

As discussed in the preceding sections, RDF is intended to be used to express statements about resources in
the form of a graph, using specific vocabularies (names of resources, properties, classes, etc.). RDF is also
intended to be the foundation for more advanced languages, such as those discussed in Section 5.5. In order
to serve these purposes, the "meaning" of an RDF graph must be defined in a very precise manner.

Exactly what constitutes the "meaning" of an RDF graph in a very general sense may depend on many factors,
including conventions within a user community to interpret user-defined RDF classes and properties in specific
ways, comments in natural language, or links to other content-bearing documents. As noted briefly in Section
2.2, much of the meaning conveyed in these forms will not be directly accessible to machine processing,
although this meaning may be used by human interpreters of the RDF information, or by programmers writing
software to perform various kinds of processing on that RDF information. However, RDF statements also have
a formal meaning which determines, with mathematical precision, the conclusions (or entailments) that
machines can draw from a given RDF graph. The RDF Semantics [RDF-SEMANTICS] document defines this
formal meaning, using a technique called model theory for specifying the semantics of a formal language.
[RDF-SEMANTICS]
also defines the semantic extensions to the RDF language represented by RDF Schema, and by individual
datatypes.
In other words, the RDF model theory provides the formal underpinnings for all RDF concepts. Based on the
semantics defined in the model theory, it is simple to translate an RDF graph into a logical expression with
essentially the same meaning.

7.2 Test Cases

The RDF Test Cases [RDF-TESTS]
supplement the textual RDF specifications with test cases (examples) corresponding to particular technical
issues addressed by the RDF Core Working Group. To help describe these examples, the Test Cases
document introduces a notation called N-Triples, which provides the basis for the triples notation used
throughout this Primer. The test cases are published in machine-readable form at Web locations referenced by
the Test Cases document, so developers can use these as the basis for automated testing of RDF software.

The test cases are divided into a number of categories:

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

61 di 68 05/04/2008 18.46

Positive and Negative Parser Tests: These test whether RDF/XML parsers produce a correct N-Triples
output graph from legal RDF/XML input documents, or correctly report errors if the input documents are
not legal RDF/XML.
Positive and Negative Entailment Tests: These test whether proper entailments (conclusions) are or are
not drawn from sets of specified RDF statements.
Datatype-aware Entailment Tests: These are positive or negative entailment tests that involve the use of
datatypes, and hence require additional support for the specific datatypes involved in the tests.
Miscellaneous Tests: These are tests that do not fall into one of the other categories.

The test cases are not a complete specification of RDF, and are not intended to take precedence over the
other specification documents. However, they are intended to illustrate the intent of the RDF Core Working
Group with respect to the design of RDF, and developers may find these test cases helpful should the wording
of the specifications be unclear on any point of detail.

8. References

8.1 Normative References

[RDF-CONCEPTS]
Resource Description Framework (RDF): Concepts and Abstract Syntax, Klyne G., Carroll J. (Editors),
W3C Recommendation, 10 February 2004. This version is
http://www.w3.org/TR/2004/REC-rdf-primer-20040210/. The latest version is
http://www.w3.org/TR/rdf-concepts/.

[RDF-MIME-TYPE]
MIME Media Types, The Internet Assigned Numbers Authority (IANA). This document is
http://www.iana.org/assignments/media-types/ . The registration for application/rdf+xml is archived at
http://www.w3.org/2001/sw/RDFCore/mediatype-registration .

[RDF-MS]
Resource Description Framework (RDF) Model and Syntax Specification, Lassila O., Swick R. (Editors),
World Wide Web Consortium, 22 February 1999. This version is
http://www.w3.org/TR/1999/REC-rdf-syntax-19990222/. The latest version is
http://www.w3.org/TR/REC-rdf-syntax/.

[RDF-SEMANTICS]
RDF Semantics, Hayes P. (Editor), W3C Recommendation, 10 February 2004. This version is
http://www.w3.org/TR/2004/REC-rdf-mt-20040210/. The latest version is http://www.w3.org/TR/rdf-mt/.

[RDF-SYNTAX]
RDF/XML Syntax Specification (Revised), Beckett D. (Editor), W3C Recommendation, 10 February 2004.
This version http://www.w3.org/TR/2004/REC-rdf-syntax-grammar-20040210/. The latest version is
http://www.w3.org/TR/rdf-syntax-grammar/.

[RDF-TESTS]
RDF Test Cases, Grant J., Beckett D. (Editors), W3C Recommendation, 10 February 2004. This version
is http://www.w3.org/TR/2004/REC-rdf-testcases-20040210/. The latest version is
http://www.w3.org/TR/rdf-testcases/.

[RDF-VOCABULARY]
RDF Vocabulary Description Language 1.0: RDF Schema, Brickley D., Guha R.V. (Editors), W3C
Recommendation, 10 February 2004. This version is
http://www.w3.org/TR/2004/REC-rdf-schema-20040210/. The latest version is
http://www.w3.org/TR/rdf-schema/.

[UNICODE]
The Unicode Standard, Version 3, The Unicode Consortium, Addison-Wesley, 2000. ISBN
0-201-61633-5, as updated from time to time by the publication of new versions. (See
http://www.unicode.org/unicode/standard/versions/ for the latest version and additional information on
versions of the standard and of the Unicode Character Database).

[URIS]
RFC 2396 - Uniform Resource Identifiers (URI): Generic Syntax, Berners-Lee T., Fielding R., Masinter L.,
IETF, August 1998, http://www.isi.edu/in-notes/rfc2396.txt.

[XML]
Extensible Markup Language (XML) 1.0, Second Edition, Bray T., Paoli J., Sperberg-McQueen C.M.,
Maler E. (Editors), World Wide Web Consortium, 6 October 2000. This version is
http://www.w3.org/TR/2000/REC-xml-20001006. The latest version is http://www.w3.org/TR/REC-xml.

[XML-BASE]
XML Base, Marsh J. (Editor), World Wide Web Consortium, 27 June 2001. This version is
http://www.w3.org/TR/2001/REC-xmlbase-20010627/. The latest version is
http://www.w3.org/TR/xmlbase/.

[XML-NS]
Namespaces in XML, Bray T., Hollander D., Layman A. (Editors), World Wide Web Consortium, 14
January 1999. This version is http://www.w3.org/TR/1999/REC-xml-names-19990114/. The latest version

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

62 di 68 05/04/2008 18.46

is http://www.w3.org/TR/REC-xml-names/.
[XML-XC14N]

Exclusive XML Canonicalization Version 1.0, Boyer J., Eastlake D.E. 3rd, Reagle J. (Authors/Editors),
World Wide Web Consortium, 18 July 2002. This version is
http://www.w3.org/TR/2002/REC-xml-exc-c14n-20020718/. The latest version is
http://www.w3.org/TR/xml-exc-c14n/.

8.2 Informational References

[3GPP]
3GPP TS 26.234.
3rd Generation Partnership Project; Technical Specification Group Services and System Aspects;
Transparent end-to-end packet switched streaming service; Protocols and codecs V5.2.0 (2002-09). This
document
is available at http://www.3gpp.org/specs/specs.htm via directory
ftp://ftp.3gpp.org/specs/2002-09/Rel-5/26_series/.

[ADDRESS-SCHEMES]
Addressing Schemes, Connolly D., 2001. This document is http://www.w3.org/Addressing/schemes.html.

[BATES96]
Indexing and Access for Digital Libraries and the Internet: Human, Database, and Domain Factors, Bates
M.J., 1996. This document is http://is.gseis.ucla.edu/research/mjbates.html.

[BERNERS-LEE98]
What the Semantic Web can represent, Berners-Lee T., 1998. This document is
http://www.w3.org/DesignIssues/RDFnot.html.

[CC/PP]
Composite Capability/Preference Profiles (CC/PP): Structure and Vocabularies, Klyne G., Reynolds F.,
Woodrow C., Ohto H., Hjelm J., Butler M., Tran, L., W3C Recommendation, 15 January 2004. This
version is http://www.w3.org/TR/2004/REC-CCPP-struct-vocab-20040115/. The latest version is
http://www.w3.org/TR/CCPP-struct-vocab/.

[CG]
Conceptual Graphs, Sowa J., ISO working document ISO/JTC1/SC32/WG2 N 000, 2 April 2001 (work in
progress). Available at http://users.bestweb.net/~sowa/cg/cgstand.htm.

[CHARMOD]
Character Model for the World Wide Web 1.0, DÃ¼rst M., Yergeau F., Ishida R., Wolf M., Freytag A.,
Texin T. (Editors), World Wide Web Consortium, 20 February 2002 (work in progress). This version is
http://www.w3.org/TR/2002/WD-charmod-20020220/. The latest version is
http://www.w3.org/TR/charmod/.

[CIM]
Common Information Model (CIM): CIM 10 Version, EPRI, Palo Alto, CA: 2001, 1001976. This document
is available at http://www.epri.com/attachments/286161_1001976(1).pdf (267pp.).

[COWAN]
Metadata, Reuters Health Information, and Cross-Media Publishing , Cowan J., 2002. Presentation at
Seybold New York 2002 Enterprise Publishing Conference. This document
is http://seminars.seyboldreports.com/seminars/2002_new_york/presentations/014/cowan_john.ppt. An
accompanying transcript
is http://seminars.seyboldreports.com/2002_new_york/files/transcripts/doc/transcript_EP7.doc

[DAF]
Utility Management System (UMS) Data Access Facility, version 2.0, Object Management Group,
November 2002. This document
is available at http://www.omg.org/technology/documents/formal/UMS_Data_Access_Facility.htm.

[DAML+OIL]
DAML+OIL (March 2001) Reference Description, Connolly D., van Harmelen F., Horrocks I., McGuinness
D.L., Patel-Schneider P.F., Stein L.A., World Wide Web Consortium, 18 December 2001. This document
is http://www.w3.org/TR/daml+oil-reference.

[DC]
Dublin Core Metadata Element Set, Version 1.1: Reference Description, 02 June 2003. This version is
http://dublincore.org/documents/2003/06/02/dces/. The latest version is
http://dublincore.org/documents/dces/.

[DIPRINC]
Device Independence Principles.
Gimson, R., Finkelstein, S., Maes, S., Suryanarayana, L., World Wide Web Consortium, 18 September
2001 (work in progress). This version is http://www.w3.org/TR/2001/WD-di-princ-20010918. The latest
version is http://www.w3.org/TR/di-princ/.

[DWZ01]
XML for CIM Model Exchange
, deVos A., Widergreen S.E., Zhu J., Proc. IEEE Conference on Power Industry Computer Systems,
Sydney, Australia, 2001. This document is http://www.langdale.com.au/PICA/.

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

63 di 68 05/04/2008 18.46

[GO]
Gene Ontology: tool for the unification of biology, The Gene Ontology Consortium, Nature Genetics, Vol.
25: 25-29, May 2000. Available at http://www.geneontology.org/GO_nature_genetics_2000.pdf

[GRAY]
Logic, Algebra and Databases, Gray P., Ellis Horwood Ltd., 1984. ISBN 0-85312-709-3, 0-85312-803-0,
0-470-20103-7, 0-470-20259-9.

[HAYES]
In Defense of Logic, Hayes P., Proceedings from the International Joint Conference on Artificial
Intelligence, 1975, San Francisco. Morgan Kaufmann Inc., 1977. Also in Computation and Intelligence:
Collected Readings, Luger G. (ed), AAAI press/MIT press, 1995. ISBN 0-262-62101-0.

[KIF]
Knowledge Interchange Format, Genesereth M., draft proposed American National Standard
NCITS.T2/98-004. Available at http://logic.stanford.edu/kif/dpans.html.

[LBASE]
LBase: Semantics for Languages of the Semantic Web, Guha R. V., Hayes P., W3C Note, 10 October
2003. This version is http://www.w3.org/TR/2003/NOTE-lbase-20031010/. The latest version is
http://www.w3.org/TR/lbase/.

[LUGER]
Artificial Intelligence: Structures and Strategies for Complex Problem Solving (3rd ed.), Luger G.,
Stubblefield W., Addison Wesley Longman, 1998. ISBN 0-805-31196-3.

[MATHML]
Mathematical Markup Language (MathML) Version 2.0, Carlisle D., Ion P., Miner R., Poppelier N.
(Editors); Ausbrooks R., Buswell S., Dalmas S., Devitt S., Diaz A., Hunter R., Smith B., Soiffer N., Sutor
R., Watt S. (Principal Authors), World Wide Web Consortium, 21 February 2001. This version is
http://www.w3.org/TR/2001/REC-MathML2-20010221/. The latest version is
http://www.w3.org/TR/MathML2/.

[MMS-CTR]
Multimedia Messaging Service Client Transactions Specification. WAP-206-MMSCTR-20020115-a. This
document is available at http://www.openmobilealliance.org/.

[NAMEADDRESS]
Naming and Addressing: URIs, URLs, ..., Connolly D., 2002. This document is
http://www.w3.org/Addressing/.

[OWL]
OWL Web Ontology Language Reference, Dean M., Schreiber G (Editors); van Harmelen F., Hendler J.,
Horrocks I., McGuinness D.L., Patel-Schneider P.F., Stein L.A. (Authors), W3C Recommendation, 10
February 2004. The latest version is http://www.w3.org/TR/owl-ref/.

[PRISM]
PRISM: Publishing Requirements for Industry Standard Metadata, Version 1.1, 19 February 2002. The
latest version of the PRISM specification is available at http://www.prismstandard.org/.

[RDFISSUE]
RDF Issue Tracking, McBride B., 2002. This document is http://www.w3.org/2000/03/rdf-tracking/.

[RDF-S]
Resource Description Framework (RDF) Schema Specification 1.0 , Brickley D., Guha, R.V. (Editors),
World Wide Web Consortium. 27 March 2000. This version is
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/.

[RSS]
RDF Site Summary (RSS) 1.0, Beged-Dov G., Brickley D., Dornfest R., Davis I., Dodds L., Eisenzopf J.,
Galbraith D., Guha R.V., MacLeod K., Miller E., Swartz A., van der Vlist E., 2000. This document is
http://purl.org/rss/1.0/spec.

[RUBY]
Ruby Annotation, Sawicki M., Suignard M., Ishikawa M., DÃ¼rst M., Texin T. (Editors), World Wide Web
Consortium, 31 May 2001. This version is http://www.w3.org/TR/2001/REC-ruby-20010531/. The latest
version is http://www.w3.org/TR/ruby/.

[SOWA]
Knowledge Representation: Logical, Philosophical and Computational Foundations, Sowa J.,
Brookes/Cole, 2000. ISBN 0-534-94965-7.

[SVG]
Scalable Vector Graphics (SVG) 1.1 Specification, Ferraiolo J., Fujisawa J., Jackson D. (Editors), World
Wide Web Consortium, 14 January 2003. This version is
http://www.w3.org/TR/2003/REC-SVG11-20030114/. The latest version is http://www.w3.org/TR/SVG11/.

[UAPROF]
User Agent Profile.
OMA-WAP-UAProf-v1_1. This document is available at http://www.openmobilealliance.org/.

[WEBDATA]
Web Architecture: Describing and Exchanging Data, Berners-Lee T., Connolly D., Swick R., World Wide
Web Consortium, 7 June 1999. This document is http://www.w3.org/1999/04/WebData.

[XLINK]

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

64 di 68 05/04/2008 18.46

XML Linking Language (XLink) Version 1.0, DeRose S., Maler E., Orchard D. (Editors), World Wide Web
Consortium, 27 June 2001. This version is http://www.w3.org/TR/2001/REC-xlink-20010627/. The latest
version is http://www.w3.org/TR/xlink/.

[XML-SCHEMA2]
XML Schema Part 2: Datatypes, Biron P., Malhotra A. (Editors), World Wide Web Consortium. 2 May
2001. This version is http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/. The latest version is
http://www.w3.org/TR/xmlschema-2/.

[XPACKAGE]
XML Package (XPackage) 1.0 , Wilson G., Editor's Working Draft, 6 March 2003. This version is
http://www.xpackage.org/specification/xpackage-draft-20030306.html. The latest version is
http://www.xpackage.org/specification/.

9. Acknowledgments

This document has benefited from inputs from many members of the RDF Core Working Group. Specific
thanks are due to Art Barstow, Dave Beckett, Dan Brickley, Ron Daniel, Ben Hammersley, Martyn Horner,
Graham Klyne, Sean Palmer, Patrick Stickler, Aaron Swartz, Ralph Swick, and Garret Wilson who, together
with the many people who commented on earlier versions of the Primer, provided valuable contributions to this
document.

In addition, this document contains a significant contribution from Pat Hayes, Sergey Melnik, and Patrick
Stickler, who led the development of the RDF datatype facilities described in the RDF family of specifications.

Frank Manola also thanks The MITRE Corporation, Frank's employer during most of the preparation of this
document, for its support of his RDF Core Working Group activities under a MITRE Sponsored Research grant.

Appendix A: More on Uniform Resource Identifiers (URIs)

Note: This section is intended to provide a brief introduction to URIs. The definitive specification of URIs is
RFC 2396 [URIS], which should be consulted for further details. Additional discussion of URIs can also be
found in Naming and Addressing: URIs, URLs, ... [NAMEADDRESS].

As discussed in Section 2.1, the Web provides a general form of identifier, called the Uniform Resource
Identifier
(URI), for identifying (naming) resources on the Web. Unlike URLs, URIs are not limited to identifying things
that have network locations, or use other computer access mechanisms. A number of different URI schemes
(URI forms) have been already been developed, and are being used, for various purposes. Examples include:

http: (Hypertext Transfer Protocol, for Web pages)
mailto: (email addresses), e.g., mailto:em@w3.org
ftp: (File Transfer Protocol)
urn:
(Uniform Resource Names, intended to be persistent location-independent resource identifiers), e.g.,
urn:isbn:0-520-02356-0 (for a book)

A list of existing URI schemes can be found in Addressing Schemes [ADDRESS-SCHEMES], and it is a good
idea to consider adapting one of the existing schemes for any specialized identification purposes, rather than
trying to invent a new one.

No one person or organization controls who makes URIs or how they can be used. While some URI schemes,
such as URL's http:, depend on centralized systems such as DNS, other schemes, such as freenet:, are
completely decentralized. This means that, as with any other kind of name, no one needs special authority or
permission to create a URI for something. Also, anyone can create URIs to refer to things they do not own, just
as in ordinary language anyone can use whatever name they like for things they do not own.

As also noted in Section 2.1, RDF uses URI references [URIS] to name subjects, predicates, and objects in
RDF statements. A URI reference (or URIref) is a URI, together with an optional fragment identifier at the end.
For example, the URI reference http://www.example.org/index.html#section2 consists of the URI
http://www.example.org/index.html and (separated by the "#" character) the fragment identifier Section2.
RDF URIrefs can contain Unicode [UNICODE] characters (see [RDF-CONCEPTS]), allowing many languages
to be reflected in URIrefs.

URIrefs may be either absolute or relative. An absolute URIref refers to a resource independently of the
context in which the URIref appears, e.g., the URIref http://www.example.org/index.html. A relative URIref is
a shorthand form of an absolute URIref, where some prefix of the URIref is missing, and information from the
context in which the URIref appears is required to fill in the missing information. For example, the relative
URIref otherpage.html, when appearing in a resource http://www.example.org/index.html, would be filled out

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

65 di 68 05/04/2008 18.46

to the absolute URIref http://www.example.org/otherpage.html. A URIref without a URI part is considered a
reference to the current document (the document in which it appears). So, an empty URIref within a document
is considered equivalent to the URIref of the document itself. A URIref consisting of just a fragment identifier is
considered equivalent to the URIref of the document in which it appears, with the fragment identifier appended
to it. For example, within http://www.example.org/index.html, if #section2 appeared as a URIref, it would be
considered equivalent to the absolute URIref http://www.example.org/index.html#section2.

[RDF-CONCEPTS]
notes that RDF graphs (the abstract models) do not use relative URIrefs, i.e., the subjects, predicates, and
objects (and datatypes in typed literals) in RDF statements must always be identified independently of any
context. However, a specific concrete RDF syntax, such as RDF/XML, may allow relative URIrefs to be used
as a shorthand for absolute URIrefs in certain situations. RDF/XML does permit such use of relative URIrefs,
and some of the RDF/XML examples in this Primer illustrate such uses. [RDF-SYNTAX] should be consulted
for further details.

Both RDF and Web browsers use URIrefs to identify things. However, RDF and browsers interpret URIrefs in
slightly different ways. This is because RDF uses URIrefs only to identify things, while browsers also use
URIrefs to retrieve
things. Often there is no effective difference, but in some cases the difference can be significant. One obvious
difference is that when a URIref is used in a browser, there is the expectation that it identifies a resource that
can actually be retrieved: that something is actually "at" the location identified by the URI. However, in RDF a
URIref may be used to identify something, such as a person, that cannot be retrieved on the Web. People
sometimes use RDF together with a convention that, when a URIref is used to identify an RDF resource, a
page containing descriptive information about that resource will be placed on the Web "at" that URI, so that the
URIref can be used in a browser to retrieve that information. This can be a useful convention in some
circumstances, although it creates a difficulty in distinguishing the identity of the original resource from the
identity of the Web page describing it (a subject discussed further in Section 2.3). However, this convention is
not an explicit part of the definition of RDF, and RDF itself does not assume that a URIref identifies something
that can be retrieved.

Another difference is in the way URIrefs with fragment identifiers are handled. Fragment identifiers are often
seen in the URLs that identify HTML documents, where they serve to identify a specific place within the
document identified by the URL. In normal HTML usage, where URI references are used to retrieve the
indicated resources, the two URIrefs:

http://www.example.org/index.html
http://www.example.org/index.html#Section2

are related (they both refer to the same document, the second one identifying a location within the first one).
However, as noted already, RDF uses URI references purely to identify resources, not to retrieve them, and
RDF assumes no particular relationship between these two URIrefs. As far as RDF is concerned, they are
syntactically different URI references, and hence may refer to unrelated things. This does not mean that the
HTML-defined containment relationship might not exist, just that RDF does not assume that a relationship
exists based only on the fact that the URI parts of the URI references are the same.

Carrying this point further, RDF does not assume that there is any relationship between URI references that
share a common leading string, whether there is a fragment identifier or not. For example, as far as RDF is
concerned, the two URIrefs:

http://www.example.org/foo.html
http://www.example.org/bar.html

have no particular relationship even though both of them start with the string http://www.example.org/. To
RDF, they are simply different resources, because their URIrefs are different. (They may in fact be two files
located in the same directory, but RDF does not assume this or any other relationship exists.)

Appendix B: More on the Extensible Markup Language (XML)

Note: This section is intended to provide a brief introduction to XML. The definitive specification of XML is
[XML], which should be consulted for further details.

The Extensible Markup Language [XML] was designed to allow anyone to design their own document format
and then write a document in that format. Like HTML documents (Web pages), XML documents contain text.
This text consists primarily of plain text content, and markup in the form of tags. This markup allows a
processing program to interpret the various pieces of content (called elements). Both XML content and (with
certain exceptions) tags can contain Unicode [UNICODE] characters, allowing information from many
languages to be directly represented. In HTML, the set of permissible tags, and their interpretation, is defined
by the HTML specification. However, XML allows users to define their own markup languages (tags and the
structures in which they can appear) adapted to their own specific requirements (the RDF/XML language

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

66 di 68 05/04/2008 18.46

described in Section 3
is one such XML markup language). For example, the following is a simple passage marked up using an
XML-based markup language:

<sentence><person webid="http://example.com/#johnsmith">I</person>
just got a new pet <animal>dog</animal>.</sentence>

Elements delimited by tags (<sentence>, <person>, etc.) are introduced to reflect a particular structure
associated with the passage. The tags allow a program written with an understanding of these particular
elements, and the way they are structured, to properly interpret the passage. For example, one of the elements
in this example is <animal>dog</animal>. This consists of the start-tag <animal>, the element content, and a
matching end-tag </animal>. This animal element, together with the person element, are nested as part of the
content of the sentence
element. The nesting is possibly clearer (and closer to some of the more "structured" XML contained in the rest
of this Primer) if the sentence is written:

<sentence>
 <person webid="http://example.com/#johnsmith">I</person>
 just got a new pet
 <animal>dog</animal>.
</sentence>

In some cases, an element may have no content. This can be written either by enclosing no content within the
pair of delimiting start- and end-tags, as in <animal></animal>, or by using a shorthand form of tag called an
empty-element tag, as in <animal/>.

In some cases, a start-tag (or empty-element tag) may contain qualifying information other than the tag name,
in the form of attributes. For example, the start-tag of the <person> element contains the attribute
webid="http://example.com/#johnsmith"
(presumably identifying the specific person referred to). An attribute consists of a name, an equal sign, and a
value (enclosed in quotes).

This particular markup language uses the words "sentence," "person," and "animal" as tag names in an attempt
to convey some of the meaning of the elements; and they would convey meaning to an English-speaking
person reading it, or to a program specifically written to interpret this vocabulary. However, there is no built-in
meaning here. For example, to non-English speakers, or to a program not written to understand this markup,
the element <person> may mean absolutely nothing. Take the following passage, for example:

<dfgre><reghh bjhbw="http://example.com/#johnsmith">I</reghh>
just got a new pet <yudis>dog</yudis>.</dfgre>

To a machine, this passage has exactly the same structure as the previous example. However, it is no longer
clear to an English-speaker what is being said, because the tags are no longer English words. Moreover,
others may have used the same words as tags in their own markup languages, but with completely different
intended meanings. For example, "sentence" in another markup language might refer to the amount of time
that a convicted criminal must serve in a penal institution. So additional mechanisms must be provided to help
keep XML vocabulary straight.

To prevent confusion, it is necessary to uniquely identify markup elements. This is done in XML using XML
Namespaces [XML-NS]. A namespace
is just a way of identifying a part of the Web (space) which acts as a qualifier for a specific set of names. A
namespace is created for an XML markup language by creating a URI for it. By qualifying tag names with the
URIs of their namespaces, anyone can create their own tags and properly distinguish them from tags with
identical spellings created by others. A convention that is sometimes followed is to create a Web page to
describe the markup language (and the intended meaning of the tags) and use the URL of that Web page as
the URI for its namespace. However, this is just a convention, and neither XML nor RDF assumes that a
namespace URI identifies a retrievable Web resource. The following example illustrates the use of an XML
namespace.

<user:sentence xmlns:user="http://example.com/xml/documents/">
 <user:person user:webid="http://example.com/#johnsmith">I</user:person>
just got a new pet <user:animal>dog</user:animal>.
</user:sentence>

In this example, the attribute xmlns:user="http://example.com/xml/documents/" declares a namespace for use
in this piece of XML. It maps the prefix user to the namespace URI http://example.com/xml/documents/. The
XML content can then use qualified names (or QNames) like user:person as tags. A QName contains a prefix
that identifies a namespace, followed by a colon, and then a local name for an XML tag or attribute name. By
using namespace URIs to distinguish specific groups of names, and qualifying tags with the URIs of the
namespaces they come from, as in this example, there is no need to worry about tag names conflicting. Two

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

67 di 68 05/04/2008 18.46

tags having the same spelling are considered the same only if they also have the same namespace URIs.

Every XML document is required to be well-formed. This means the XML document must satisfy a number of
syntactic conditions, for example, that every start-tag must have a matching end-tag, and that elements must
be properly nested within other elements (elements may not overlap). The complete set of well-formedness
conditions is defined in [XML].

In addition, an XML document may optionally include an XML document type declaration to define additional
constraints on the structure of the document, and to support the use of predefined units of text within the
document. The document type declaration (introduced with DOCTYPE) contains or points to declarations that
define a grammar for the document. This grammar is known as a document type definition, or DTD. The
declarations in a DTD specify such things as which XML elements and attributes may appear in XML
documents corresponding to the DTD, the relationships of these elements and attributes (e.g., which elements
can be nested within which other elements, or which attributes may appear with which elements), and whether
elements or attributes are required or optional. The document type declaration can point to a set of
declarations located outside the document (called the external subset, which can be used to allow common
declarations to be shared among multiple documents), can include the declarations directly in the document
(called the internal subset), or can have both internal and external DTD subsets. The complete DTD for a
document consists of both subsets taken together. A simple example of an XML document with a document
type declaration is shown in Example 47:

Example 47: An XML Document With a Document Type Declaration
<?xml version="1.0"?>
<!DOCTYPE greeting SYSTEM "http://www.example.org/dtds/hello.dtd">
<greeting>Hello, world!</greeting>

In this case, the document has only an external DTD subset, and the system identifier
http://www.example.org/dtds/hello.dtd provides its location (a URIref).

An XML document is valid
if it has an associated document type declaration and the document complies with the constraints defined by
the document type declaration.

An RDF/XML document is only required to be well-formed XML; it is not intended to be validated against an
XML DTD (or an XML Schema), and [RDF-SYNTAX] does not specify a normative DTD that could be used for
validating arbitrary RDF/XML (an appendix of [RDF-SYNTAX] does provide a non-normative example schema
for RDF/XML). As a result, more detailed discussion of XML DTD grammars is beyond the scope of this
Primer. Further information on XML DTDs and XML validation can be found in [XML], and the numerous books
on XML.

However, there is one use of XML document type declarations that is relevant to RDF/XML, and that is their
use in defining XML entities. An XML entity declaration essentially associates a name with a string of
characters. When the entity name is used elsewhere within an XML document, XML processors replace the
entity name with the corresponding string. This provides a way to abbreviate long strings such as URIrefs, and
can help make XML documents containing such strings more readable. Using a document type declaration just
to declare XML entities is allowed, and can be useful, even when (as in RDF/XML) the documents are not
intended to be validated.

In RDF/XML documents, entities are generally declared within the document itself, i.e., using only an internal
DTD subset (one reason for this is that RDF/XML is not intended to be validated, and non-validating XML
processors are not required to process external DTD subsets). For example, providing the document type
declaration shown in Example 48
at the beginning of an RDF/XML document allows the URIrefs in that document for the rdf, rdfs, and xsd
namespaces to be abbreviated as &rdf;, &rdfs;, and &xsd; respectively, as shown in the example.

Example 48: Some XML Entity Declarations
<?xml version='1.0'?>

<!DOCTYPE rdf:RDF [
 <!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">
 <!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">
]>

<rdf:RDF
 xmlns:rdf = "&rdf;"
 xmlns:rdfs = "&rdfs;"
 xmlns:xsd = "&xsd;">

...RDF statements...

</rdf:RDF>

RDF Primer file:///E:/aaa_DL_FUB/Support%20Material/RDF%20Primer.htm

68 di 68 05/04/2008 18.46

Appendix C: Changes

Only minor editorial and typographic changes have been made since the Proposed Recommendation version.
Older changes are detailed in its change log.

